

Storing SFC-based point clouds
with cLoI and offering access via
an octree-webservice
Martijn Meijers
b.m.meijers@tudelft.nl
Delft University of Technology, The Netherlands

Monday, January 23, 2023
Delft | Faculty of Architecture and the Built Environment
Berlage Room | CET 13:00 – 17:00

NLeSC eTEC 2020 project – TU Delft nD-pointclouds – Project meeting

mailto:b.m.meijers@tudelft.nl

More and more points collected...
● Rapid increase in data collection of Point clouds
● Many sources: Different properties

– LiDAR: x, y, z, intensity, return number, GPS time, ...
– Photogrammetry: x, y, z, r, g, b, quality of derived point, ...

● Which dimensions frequently queried depends on application
(e.g. change detection needs time, segmentation might need
normal, some applications may need accuracy of points)

● nD: multi-dimensional points

nD Point Cloud
● nD-point cloud data structure result of earlier research:

– nD points
– stored inside database
– access method based on Space-Filling-Curves (SFC): SFC allows mapping from nD to 1D

● Objective of this research:
Investigate whether developed nD-point cloud data structure can be used to disseminate
points to current state-of-the-art 3D point cloud web visualization applications

● Paper: http://resolver.tudelft.nl/uuid:30fc6840-8ca8-4fa4-b39f-9ea4614bfa6a
Presented at 17th 3D GeoInfo Conference, 3DGeoinfo 2022, Sydney, Australia

http://resolver.tudelft.nl/uuid:30fc6840-8ca8-4fa4-b39f-9ea4614bfa6a

Potree

nD points
SFC tableCesium

…

PCServe – Software Architecture

PCServe

Web
Service /

Proxy

Potree

nD points
SFC table

+ octree
table

Cesium

…

PCServe – Software Architecture

Experiment
● Use Dutch LiDAR height data set (AHN3)
● Load as nD point cloud structure:

SFC key – points table
sorted by SFC (in PostgreSQL)

● Create virtual Octree (octree table)
● Use PCServe (web service) and Potree as

visualization client
● Measure performance:

– Disk / Response size
– Time of construction
– Time of data retrieval

nD Point cloud structure – Background
Space Filling Curve (SFC)

Lebesgue / Morton
curve

 (4, 5) 49
↕ ↕

(100, 101) ↔ 11 00 01

 (4, 5) 49
↕ ↕

(100, 101) ↔ 11 00 01
↕

 3, 0, 1

3 ↔ 113

Upper
part Y
dim

Upper
part X
dim

SFC key also ‘address’ /
materialized path
in 2n tree

Here n = 2, but works same
for higher n (3, 4, 5, ...)

 (4, 5) 49
↕ ↕

(100, 101) ↔ 11 00 01
↕

 3, 0, 1 0

3, 0, ... ↔ 11 00 ..

Lower
part Y
dim

Lower
part X
dim

 (4, 5) 49
↕ ↕

(100, 101) ↔ 11 00 01
↕

 3, 0, 1

3, 0, 1 ↔ 11 00 01
1

Higher
part Y
dim

Lower
part X
dim

SFC key also ‘address’ /
materialized path
in 2n tree

Here n = 2, but works same
for higher n (3, 4, 5, ...)

nD Point cloud structure – Background
Space Filling Curve (SFC) – Query Approach

Query:
Box((3,4), (5,5))

Query:
Box((3,4), (5,5))

Ranges:
[16, 32)
[48, 64)

Overlap:
refine possible

No overlap

Fully contained

Query box fully
contains SFC 2n tree node?

Query:
Box((3,4), (5,5))

Ranges:
[24, 28)
[48, 52)

Overlap:
refine possible

No containment

Fully contained

Query box fully
contains SFC 2n tree node?

Query
Box((3,4), (5,5))

Ranges:
[26, 27)
[27, 28)
[48, 52)

Overlap:
refine possible

No containment

Fully contained

Query box fully
contains SFC 2n tree node?

nD Point cloud structure – Background
Continuous Level of Importance (cLoI)

Continuous Level of Importance
● No Level of Detail mechanism for measured points
● ‘Level organisation thinking’: not so many points in overview level (e.g. for 2D), then

next level 4 times (= 2nDims) more points (with 3D→8 times)
● Add per point: Continuous Level of Importance (cLoI)*

Continuous (float: e.g. 0.1, 0.2, 3.5, 3.6) values instead of Discrete values (int, e.g. 0,
0, 3, 3): Refinement of integer levels.

● Can be cheaply generated by pseudo-random value U [0, 1)
with L largest / max level we need, and n nature of data (e.g. n = 2 for 2.5D surface
scan):

l = 1/n log2 (U (2n(L+1) − 1) + 1)

* More details in:
 Van Oosterom et al., 2022, “Organising and visualizing point clouds with continuous levels of detail”,
 ISPRS J Photogr. + Remote Sensing, http://dx.doi.org/10.1016/j.isprsjprs.2022.10.004

http://dx.doi.org/10.1016/j.isprsjprs.2022.10.004

nD point cloud in Postgres
● Read points from .laz: x, y, z (and additional attributes)
● For each point:

– cloi = compute_cLoI(nDims, maxLevel)
– compute_key(x, y, z, cloi) → SFC key

● Load SFC key (and attributes) to table inside database
● Sort & Cluster table

– Create B-tree index on SFC key column
– Cluster on this index (sorts table physically)

● Create histogram* for efficient querying
(store approximate count per 2n-tree node upto certain depth)

* More info on nD-Histogram: Haicheng Liu, “nD-PointCloud Data Management”, PhD thesis, TU Delft, June 2022, Chapters 4 & 5.
 http://resolver.tudelft.nl/uuid:9f380f03-5842-45a0-87d4-4a8372e88dd5

http://resolver.tudelft.nl/uuid:9f380f03-5842-45a0-87d4-4a8372e88dd5

PCServe

3D Point cloud Web visualization
● Potree, Cesium (in browser, WebGL)
● Expect to find groups of points organised as Octree server-side
● Two options:

1. Adapt client (make it aware of our nD point cloud structure)
2. Model Octree on top of nD point cloud structure

● For this research: Use option 2) and make virtual Octree
available via web service: PCServe (acting as ‘octree’ proxy)

Preprocessing for PCServe: derive
Octree
● Given sorted nD point cloud data table

loaded in database;
4D SFC key (x, y, z, cLoI)

● Create virtual Octree – i.e. structure of
octree nodes + query ranges to get
points from nD point cloud table

● Using SFC query mechanism to
determine if Octree node has points

● Store all found Octree nodes in Octree
table: (node ID, 4D node geometry,
SFC ranges, point count)

https://en.wikipedia.org/wiki/Octree#/media/File:Octree2.svg

● Algorithm:
– Root node of Octree spans complete domain (xyz)-volume &&

cLoI value: 0 <= cLoI < 1
– Translate this x-y-z-imp nD geometry into SFC ranges and query

for number of points
– If points in root node: split (xyz)-volume in 8 childs and

use cLoI value for first level child nodes: 1 <= cLoI < 2
– Repeat until no more points occur or when we reach cLoI max

0 <= cLoI < 1

1 <= cLoI < 2

PCServe: DB preparation (summary)

PCServe: From DB to web client
● Octree structure: Can be retrieved from Octree table
● Point data: Given a node id:

– retrieve SFC ranges for node from Octree table
– use these SFC ranges to get points from nD points table

(indexed with SFC key)
● Serialization format:

As .laz file or as Potree’s own binary format

Results

nD point cloud data structure
● Input:

– Point count: 651’481’021
– .laz: 3’219MB

● Output (table + Btree):
– 80’521 MB (x25)

● 85 min to create + load nD point cloud structure
● 19 min to create histogram
● Total: 1 ¾ hour (104 min)

Virtual Octree construction
● Time to construct: 1 hour total

– 17 min (range generation)
– 43 min (query for point count in Octree nodes)

Virtual Octree layout
level oct count point count

0 1 30 119
1 7 116 422
2 24 450 523
3 74 1 909 593
4 226 7 631 203
5 745 30 542 745
6 2 615 122 157 155
7 9 809 488 604 847

total 13 501 651 442 607
Quite some nodes with

little number
of points

Average of ~50k points per node

factor
~4x

Octree chunk retrieval

Averages for responses made by PCServe

xyz xyz+more
Query duration (ms) 329 (72.7%) 416 (69.6%)
Serialize duration (ms) 123 (27.3%) 181 (30.4%)
Total duration (ms) 452 598
Point count 44 555 38 981

Prototype / Demo
● Prototype available at:

http://ahn2.pointclouds.nl/potree-sfc/

http://ahn2.pointclouds.nl/potree-sfc/

Conclusions

Conclusion
● Presented nD point cloud structure + PCServe
● PCServe acts as proxy to nD SFC pointcloud in

database
● ‘Eat own dogfood’: Possible to use the nD point cloud

data structure for web visualization
● Used Potree renderer: Interactive visualization

possible

Currently working on
● Engineering: parallel pre-processing, optimizing nD point cloud data structure

(less disk size consumption – parquet files seem promising, but outside
DBMS)

● More clients: Next to Potree also Cesium, QGIS (via COPC)
● Other spatial access structure for use in renderer (‘option 1’): Follow SFC

curve (no need to ‘proxy’ requests)
● Use cLoI inside renderer directly (decide which points (not) to show in 3D view

depending on eye of observer)
● Study same principle with other dimensions

(where dims != x, y, z, cloi → e.g. time, classification, quality)

Questions?
● Martijn Meijers

b.m.meijers@tudelft.nl
https://www.tudelft.nl/en/staff/b.m.meijers/
tel. (+31) 15 278 56 42

mailto:b.m.meijers@tudelft.nl
https://www.tudelft.nl/en/staff/b.m.meijers/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 42
	Slide 43
	Slide 44
	Slide 45

