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More and more points collected...
● Rapid increase in data collection of Point clouds
● Many sources: Different properties

– LiDAR: x, y, z, intensity, return number, GPS time, ...
– Photogrammetry: x, y, z, r, g, b, quality of derived point, ...

● Which dimensions frequently queried depends on application 
(e.g. change detection needs time, segmentation might need 
normal, some applications may need accuracy of points)

● nD: multi-dimensional points



  

nD Point Cloud
● nD-point cloud data structure result of earlier research:

– nD points
– stored inside database
– access method based on Space-Filling-Curves (SFC): SFC allows mapping from nD to 1D

● Objective of this research: 
Investigate whether developed nD-point cloud data structure can be used to disseminate 
points to current state-of-the-art 3D point cloud web visualization applications

● Paper: http://resolver.tudelft.nl/uuid:30fc6840-8ca8-4fa4-b39f-9ea4614bfa6a
Presented at 17th 3D GeoInfo Conference, 3DGeoinfo 2022, Sydney, Australia

http://resolver.tudelft.nl/uuid:30fc6840-8ca8-4fa4-b39f-9ea4614bfa6a
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Experiment
● Use Dutch LiDAR height data set (AHN3)
● Load as nD point cloud structure:

SFC key – points table
sorted by SFC (in PostgreSQL)

● Create virtual Octree (octree table)
● Use PCServe (web service) and Potree as 

visualization client
● Measure performance:

– Disk / Response size
– Time of construction
– Time of data retrieval



  

nD Point cloud structure – Background
Space Filling Curve (SFC)
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nD Point cloud structure – Background
Space Filling Curve (SFC) – Query Approach



  

Query:
Box((3,4), (5,5))



  

Query:
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nD Point cloud structure – Background
Continuous Level of Importance (cLoI)



  

Continuous Level of Importance
● No Level of Detail mechanism for measured points 
● ‘Level organisation thinking’: not so many points in overview level (e.g. for 2D), then 

next level 4 times (= 2nDims) more points (with 3D→8 times)
● Add per point: Continuous Level of Importance (cLoI)*

Continuous (float: e.g. 0.1, 0.2, 3.5, 3.6) values instead of Discrete values (int, e.g. 0, 
0, 3, 3): Refinement of integer levels.

● Can be cheaply generated by pseudo-random value U [0, 1)
with L largest / max level we need, and n nature of data (e.g. n = 2 for 2.5D surface 
scan):

l = 1/n log2 (U (2n(L+1) − 1) + 1)

* More details in: 
  Van Oosterom et al., 2022, “Organising and visualizing point clouds with continuous levels of detail”, 
  ISPRS J Photogr. + Remote Sensing, http://dx.doi.org/10.1016/j.isprsjprs.2022.10.004 

http://dx.doi.org/10.1016/j.isprsjprs.2022.10.004


  

nD point cloud in Postgres
● Read points from .laz: x, y, z (and additional attributes)
● For each point:

– cloi = compute_cLoI(nDims, maxLevel)
– compute_key(x, y, z, cloi) → SFC key

● Load SFC key (and attributes) to table inside database
● Sort & Cluster table

– Create B-tree index on SFC key column
– Cluster on this index (sorts table physically)

● Create histogram* for efficient querying
(store approximate count per 2n-tree node upto certain depth)

* More info on nD-Histogram: Haicheng Liu, “nD-PointCloud Data Management”, PhD thesis, TU Delft, June 2022, Chapters 4 & 5.
  http://resolver.tudelft.nl/uuid:9f380f03-5842-45a0-87d4-4a8372e88dd5 

http://resolver.tudelft.nl/uuid:9f380f03-5842-45a0-87d4-4a8372e88dd5


  

PCServe



  

3D Point cloud Web visualization
● Potree, Cesium (in browser, WebGL)
● Expect to find groups of points organised as Octree server-side
● Two options:

1. Adapt client (make it aware of our nD point cloud structure)
2. Model Octree on top of nD point cloud structure

● For this research: Use option 2) and make virtual Octree 
available via web service: PCServe (acting as ‘octree’ proxy)



  

Preprocessing for PCServe: derive 
Octree
● Given sorted nD point cloud data table 

loaded in database; 
4D SFC key (x, y, z, cLoI)

● Create virtual Octree – i.e. structure of 
octree nodes + query ranges to get 
points from nD point cloud table

● Using SFC query mechanism to 
determine if Octree node has points

● Store all found Octree nodes in Octree 
table: (node ID, 4D node geometry,
SFC ranges, point count)

https://en.wikipedia.org/wiki/Octree#/media/File:Octree2.svg

● Algorithm:
– Root node of Octree spans complete domain (xyz)-volume && 

cLoI value: 0 <= cLoI < 1
– Translate this x-y-z-imp nD geometry into SFC ranges and query 

for number of points
– If points in root node: split (xyz)-volume in 8 childs and 

use cLoI value for first level child nodes: 1 <= cLoI < 2
– Repeat until no more points occur or when we reach cLoI max

0 <= cLoI < 1

1 <= cLoI < 2



  

PCServe: DB preparation (summary)



  

PCServe: From DB to web client
● Octree structure: Can be retrieved from Octree table
● Point data: Given a node id:

– retrieve SFC ranges for node from Octree table
– use these SFC ranges to get points from nD points table 

(indexed with SFC key)
● Serialization format:

As .laz file or as Potree’s own binary format



  

Results



  

nD point cloud data structure
● Input:

– Point count: 651’481’021
– .laz: 3’219MB

● Output (table + Btree):
– 80’521 MB (x25)

● 85 min to create + load nD point cloud structure
● 19 min to create histogram
● Total: 1 ¾ hour (104 min)



  

Virtual Octree construction
● Time to construct: 1 hour total

– 17 min (range generation)
– 43 min (query for point count in Octree nodes)



  

Virtual Octree layout
level oct count point count

0 1 30 119
1 7 116 422
2 24 450 523
3 74 1 909 593
4 226 7 631 203
5 745 30 542 745
6 2 615 122 157 155
7 9 809 488 604 847

total 13 501 651 442 607
Quite some nodes with

little number
of points

Average of ~50k points per node

factor 
~4x



  

Octree chunk retrieval

Averages for responses made by PCServe

xyz xyz+more
Query duration (ms) 329 (72.7%) 416 (69.6%)
Serialize duration (ms) 123 (27.3%) 181 (30.4%)
Total duration (ms) 452 598
Point count 44 555 38 981



  

Prototype / Demo
● Prototype available at:

http://ahn2.pointclouds.nl/potree-sfc/  

http://ahn2.pointclouds.nl/potree-sfc/


  



  

Conclusions



  

Conclusion
● Presented nD point cloud structure + PCServe
● PCServe acts as proxy to nD SFC pointcloud in 

database
● ‘Eat own dogfood’: Possible to use the nD point cloud 

data structure for web visualization
● Used Potree renderer: Interactive visualization 

possible



  

Currently working on
● Engineering: parallel pre-processing, optimizing nD point cloud data structure 

(less disk size consumption – parquet files seem promising, but outside 
DBMS)

● More clients: Next to Potree also Cesium, QGIS (via COPC)
● Other spatial access structure for use in renderer (‘option 1’): Follow SFC 

curve (no need to ‘proxy’ requests)
● Use cLoI inside renderer directly (decide which points (not) to show in 3D view 

depending on eye of observer)
● Study same principle with other dimensions

(where dims != x, y, z, cloi → e.g. time, classification, quality)



  

Questions?
● Martijn Meijers

b.m.meijers@tudelft.nl 
https://www.tudelft.nl/en/staff/b.m.meijers/ 
tel. (+31) 15 278 56 42

mailto:b.m.meijers@tudelft.nl
https://www.tudelft.nl/en/staff/b.m.meijers/
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