Coastal change from 4D point cloud data

- 1) NWO TTW CoastScan, 2018 2023, website: https://coastscan.citg.tudelft.nl/
- 2) NWO TTW AdaptCoast, 2024 2027

Kijkduin beach difference (2017-04-02) Compared to 2016-11-11. Color: Red=+0.5 m - Blue=-0.5m

nD Point Cloud Consortium Roderik Lindenbergh | Dept. of Geoscience & Remote Sensing

Motivation: Dutch dune & coastal dynamics **⁴U**_{Delft}

https://dezandmotor.nl/en

Coastal 4D point clouds

Permanent laser scan data -> 10000+ hourly epochs

<- Yearly Coastal (LiDAR) measurements 10+ yearly epochs

Snippet: http://doris.tudelft.nl/~rlindenbergh/vgc/

Change detection

- 1) Consider two 3D data sets of a given scene:
 - Before
 - After
- 2) Did the scene change?
- 3) How confident are we that the scene changed, given the quality of the data?
- 4) How much did the scene change?
- 5) In which direction did the scene changed?

2D vs. 3D change

Challenges

Data issues:

- Point clouds are not aligned
- Different epochs, or even different points in point cloud, have different (unknown) quality
- Point clouds are too big
- Points from different epochs are at different locations
- ...

Automatized, repeated acquisition

Vos, S., Anders, K., Kuschnerus, M., Lindenbergh, R., Höfle, B., Aarninkhof, S., & de Vries, S. (2022). A high-resolution 4D terrestrial laser scan dataset of the Kijkduin beach-dune system, The Netherlands. *Scientific Data*, *9*(1), 191.

4D Data

Videos: <u>https://coastscan.citg.tudelft.nl/index.php/data-publication/</u>

4D Data: repeatedly available 3D point cloud data with a significant temporal dimension

Methods for 4D analysis

Consecutive difference with first epoch/reference DEM

Kääb, A., Berthier, E., Nuth, C. *et al.* Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. *Nature* **488**, 495–498 (2012). <u>https://doi.org/10.1038/nature11324</u>

Applied on non-repeated ICESat profiles

Methods for 4D analysis

Trend Analysis

- http://doris.tudelft.nl/~rlindenbergh/publications/igarssposter.pdf
- Kalman filtering, https://doi.org/10.5194/esurf-11-593-2023
- Advanced version, under development, Mieke Kuschnerus

Coefficients of fitted functions

- Reduces data volume
- Allows to interpolate missing epochs

Clustering@Time Series: Mieke Kuschnerus

PCA@Time Series: Paco Frantzen

4D objects-by-change: Katherina Anders & Daan Hulskemper

Clustering time series of PLS data

Principal Component Analysis

PCA: classic method for multivariate data analysis and remote sensing:

Python notebook for analysing multi-spectral satellite data using PCA:

https://docs.digitalearthafrica.org/en/latest/sandbox/notebooks/Frequently_used_c ode/Principal_component_analysis.html

PCA for Point Clouds

T. Hackel, J. Wegner, K. Schindler, Contour detection in Unstructured 3D Point Clouds, IEEE CVPR, (2016)

Key idea for 3D shape analysis:

determine consecutive, othogonal directions of maximal variability

=> 3 directions for 3D

Question: how many directions for nD? Question: how many dimensions will we have?

How to use PCA for point clouds?

- 1. Input: (*k x 3*) data matrix of k 3D points
- 2. Determine the matrix of (k x the same) 3D mean/center of the k points: M_P
- 3. Get the centralized version of P:

Ρ

 $P_{c} = P - M_{p}$ (still size k x 3)

4. Determine the data covariance matrix

 $C_P = (1/k) P^T_C P_C$ (size 3 x 3, T stands for transpose)

- 5. Output: three eigenvectors \underline{e}_1 , \underline{e}_2 , \underline{e}_3 and corresponding ordered & positive eigenvalues λ_1 , λ_2 , λ_3 of C_P
- Eigenvectors point in (remaining) max variability directions
- Eigenvalues provide size of these variability

CloudCompare: eigenvalues based shape features (all kind of combinations of $\lambda_1,\,\lambda_2,\,\lambda_3$)

PCA loadings for point clouds

Our 3 3D eigenvectors, \underline{e}_1 , \underline{e}_2 , \underline{e}_3 provide an alternative Cartesian coordinate system of our 3D space.

For each individual point $p \in P$, one can determine its PCA coordinates

Definition: Loadings of *p e P*: PCA coordinates/coefficients of *p*

```
Obtaining the loadings L of P:
```

```
L = P_C \cdot E
```

With *E* the matrix with the Eigenvectors as columns

(L consists basically of the coefficients of the points in the new PCA basis)

PCA for 4D time series

Paco Frantzen,

Identifying high Alpine geomorphological processes using permanent laser scanning time series,

MSc thesis, TU Delft (research done at Univ. Innsbruck) Journal version: under review

http://resolver.tudelft.nl/uuid:ce98c4e3-6ca1-4966a5cf-2120f2fa44bf

Hintereisferner, Austria

Shaded range image of 2020-07-31 scan 120 Pitch angle 8 [degrees] Sec. Sec. of 110 100 haded 90 60 80 100 120 140 160 180 200 Yaw angle Ø [degrees]

To analyze morphological change above the Hintereisferner, Paco Frantzen used

- Range images, the native scanner format
- Space time array, list of time series of deviations per range cell
- PCA: highlight principal deviation patterns

Geomorph-analysis: PCA@time series

False colour image of relative loadings per raster cell for the first three (combined) PCs of 2022 data. Red, green, and blue correspond to the first, second, and 3 and 4 combined PC, respectively.

PCA for 4D point clouds

Assume: consecutive point clouds represent change in elevation

Idea: look for patterns in the elevation deviations.

1. Input: list of k time series of elevations at m moments: $((x(1),y(1)), (z_1(1), z_2(1) \dots, z_m(1)))$

 $((x(k),y(k)), (z_1(k), z_2(k) ..., z_m(k)))$

. . .

2. Select a reference elevation, e.g. the elevation at m=1 and covert to deviations from this elevation: $((x(1),y(1)), (0, \Delta z_2(1) ..., \Delta z_m(1)))$

 $((x(k), y(k)), (0, \Delta z_2(k) \dots, \Delta z_m(k)))$ With $\Delta z_i = z_i - z_1$

Now apply PCA to find variability in this (m-1) dimensional 'deviation space'

(forget the locations (x,y))

Input topographies

- JarKus LiDAR data of increasing quality from 2016 until 2022 (7 epochs)
- Selected terrain points (from 2 available classes, terrain and non-terrain)
- 300 x 400 m
- Interpolated to 1m grid -> 120 000 grid cells -> 120 000 time series

Left: grid cells colored by cluster; Outlying time series present in red cluster

Right: average time series per cluster

Results, PCA, full grid

False color RGB showing loadings for first 3 principal components

Artefact at top left (two triangles).

Idea:

remove first PCA cluster from data and repeat PCA analysis

Results, PCA after removal outlying cluster

False color RGB showing loadings for first 3 principal components

Artefact at top left removed

Results appear to highlight natural processes (to be further investigated)

PCA is sensitive to outliers (which is known)

Difference map, after removal outlying cluster **⁴U**Delft

Difference between 2022 and 2016 grid after removal first k-means cluster

PCA highlights change regions, k-means 'doggingly' separates change space

Conclusions on 4D analysis

4D data is more and more coming available

- Different repositories of Permanent Laser Scan data
- Repeated 'institutional' airborne laser scan and photogrammetric elevation data, and MBES data
- Repeated UAV and TLS campaigns

Multi-epoch analysis tools

- Only recently appeared
- Have been hardly applied on other projects than design-project
- Have been hardly combined

A Python Tool-box like https://github.com/3dgeo-heidelberg/py4dgeo allows to

- exploit different methods interactively
- find out peculiarities of methods on (certain) data
- also give non-experts access to upcoming methodology