
CUDA-accelerated LOD Generation

Markus Schütz
Institute of Visual Computing & Human-Centered Technology

TU Wien, Austria



CUDA-accelerated LOD Generation

Current peak LOD generation performance: 11M points/sec
On CPU
Out-of-core 

How much faster can we be in CUDA?
Pure GPU processing performance
Ignore disk I/O for now
In-core

Markus Schütz 2



CUDA-accelerated LOD Generation

“Fast Out-of-Core Octree Generation for Massive Point Clouds”
Up to 11M points/sec
With randomly sampling lower LODs

Markus Schütz 3



CUDA-accelerated LOD Generation

CUDA Approach:
Largely the same process
About 100 times faster
Spend some of that extra performance on better quality
color filtering!

Markus Schütz 4



Algorithm overview

Pass 1: Partition into octree leaf nodes with <10k points
Countsort. Pretty much the fastest way to sort into buckets.
O(n) complexity, O(2n) to be precise. 
Hierarchical Countsort: Merge cells with few points

Pass 2: Bottom-up Voxelization
Leaf-nodes contain original points
Lower LODs contain quantized points => voxels
Downsampling uses 128³ voxel grids for each node

Markus Schütz 5



CPU vs. CUDA Approach differences

Largely the same approach, but different parallelism
CPU: ~16 threads, completely independent
CUDA: 

10k CUDA cores / threads
Lot’s of threads, but not all are independant!
Threads grouped in blocks
Each thread in block operates in lockstep
84 Streaming Multiprocessors (SMs)
SMs process blocks
Each SM operates independently!

Markus Schütz 6

https://docs.nvidia.com/cuda/cuda-c-programming-guide/



CUDA-accelerated LOD Generation

My personal view of CUDAs model compared to a CPU
84 threads (1 SMs = 1 thread)
Each SM can operate independently
Each SM has massive SIMD, 
simultaneously processing 1 instruction for 128 points at once

Not entire truth but helps reason about things

Markus Schütz 7

https://docs.nvidia.com/cuda/cuda-c-programming-guide/



CUDA-accelerated LOD Generation

CUDA port needs different approach to parallelism
CPU approach utilizes 1 thread per chunk of 10M points
CUDA approach varies parallelism:

For counting, each thread processes 10k points
For random sampling, each block processes 1 octree node
For filtered sampling, all 10k threads process 1 node, then next, …

Markus Schütz 8https://docs.nvidia.com/cuda/cuda-c-programming-guide/



Why?

“For counting, each thread processes 10k points”
Trivial case, each work item exact same. It’s what the GPU excels at
Just loop until all points were processed

Markus Schütz 9



Why?

“For random sampling, each block processes 1 octree node”
Each SM has fast shared memory (L1 cache)
We use this for the sampling grid.
Sampling grid is 4 * 128³ byte, but shared mem only 48kb
Use hash map as sampling grid.
Sufficient shared mem for one node, but not more

Markus Schütz 10
https://blog.csdn.net/weixin_47297859/article/details/117523118



Why?

“For filtered sampling, all 10k threads process 1 node, then next, …”
Now need 16 byte per sample grid cell
Also need fast access to 3³ neighborhood
Hash map no longer suitable
Need to use global memory
Just use one single sample grid, and utilize all GPU threads to 
simultaneously process all points of a node
Use all threads to clear sampling grid, then process next node

Markus Schütz 11



Color Filtering

Color Filtering / Anti-Aliasing
Picking random point for lower LOD => Bad color values
Compute representative color values instead
Lower LOD point = weighted average of points it represents

Markus Schütz 12



Easy and fast way:
Compute average color of all points in sampling grid cell
Then color of point at LOD – 1 is color / count.

But: Only considers points in cell
Should also consider neighborhood

Markus Schütz 13



Slower but nicer: Weighted average neighborhood
For each point in all adjacent cells, compute weighted average
The farther from center, the smaller the contribution
Still fine-tuning, but much nicer appearance already

Markus Schütz 14



Still fine-tuning, but much nicer appearance
Especially when in motion! 

Without filtering, results “sparkle”

Markus Schütz 15



Markus Schütz 16

Can recognize the rows in 
filtered version 

Random garbage



Performance

Random sampling
145M points in 108ms (1.3 billion points/sec)

Color Filtering (single-cell)
145M points in 340ms (426M points/sec)

Color Filtering (3x3x3 neighborhood)
145M points in 946ms (152M points/sec)

Same quality -> 100x faster than CPU
Better quality -> still 10-40x faster than CPU

Markus Schütz 17



Thank you for your attention


