b

CUDA-accelerated LOD Generation

Markus Schutz

Institute of Visual Computing & Human-Centered Technology
TU Wien, Austria

CUDA-accelerated LOD Generation m

m Current peak LOD generation performance: 11M points/sec
= OnCPU
s Out-of-core

® How much faster can we be in CUDA?
s Pure GPU processing performance
s Ignore disk I/O for now
= In-core

Markus Schiitz 2

CUDA-accelerated LOD Generation

m “Fast Out-of-Core Octree Generation for Massive Point Clouds”

s Upto 11M points/sec
s With randomly sampling lower LODs

(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3 (e) Level 4

Markus Schiitz 3

CUDA-accelerated LOD Generation m

m CUDA Approach:

s Largely the same process
s About 100 times faster
s Spend some of that extra performance on better quality

s color filtering!

Markus Schiitz 4

Algorithm overview m

m Pass 1: Partition into octree leaf nodes with <10k points

s Countsort. Pretty much the fastest way to sort into buckets.
s O(n) complexity, O(2n) to be precise.
s Hierarchical Countsort: Merge cells with few points
m Pass 2: Bottom-up Voxelization
s Leaf-nodes contain original points
s Lower LODs contain quantized points => voxels
s Downsampling uses 1282 voxel grids for each node

Markus Schiitz 5

CPU vs. CUDA Approach differences m

m Largely the same approach, but different parallelism

m CPU: ~16 threads, completely independent

m CUDA:
s 10k CUDA cores / threads
s Lot’s of threads, but not all are independant!
s Threads grouped in blocks Grid
s Each thread in block operates in lockstep

[84 Streaming Multiprocessors (SMS) Thread Block || Thread Block || Thread Block || Thread Block
s SMs process blocks iy U iy iy

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

s Each SM operates independently! ¥

Markus Schiitz 6

CUDA-accelerated LOD Generation

m My personal view of CUDAs model compared to a CPU
s 84 threads (1 SMs =1 thread)
s Each SM can operate independently
s Each SM has massive SIMD,
simultaneously processing 1 instruction for 128 points at once

m Not entire truth but helps reason about things
Grid

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Markus Schiitz 7

CUDA-accelerated LOD Generation m

m CUDA port needs different approach to parallelism
m CPU approach utilizes 1 thread per chunk of 10M points

m CUDA approach varies parallelism:
s For counting, each thread processes 10k points
s For random sampling, each block processes 1 octree node
s For filtered sampling, all 10k threads process 1 node, then next, ...

Grid

Markus Schiitz https://docs.nvidia.com/cuda/&uda-c-programming-guide/

m “For counting, each thread processes 10k points”
m Trivial case, each work item exact same. It’s what the GPU excels at

s Just loop until all points were processed

Input Chunking
’ 7 7 (1]
s . 17| 4 174 [?ﬁ
-}. ‘_;} 13[14] 3 13p4| E‘i
: 10|69 10| 6 ; A
% 3“ * 12| [10] * 11 |2 ‘ %
IR 2|911|s|3 15| 3 L, GE
é;’ i¢ 17|18}14] 1 17[18] F sl
b L 11/9(3 11fs| 8 Ay
Counting Merge Sparse Cells Distribute Points

Markus Schiitz

m “For random sampling, each block processes 1 octree node”
s Each SM has fast shared memory (L1 cache)

s We use this for the sampling grid.
s Sampling grid is 4 * 1283 byte, but shared mem only 48kb

s Use hash map as sampling grid.
s Sufficient shared mem for one node, but not more

https://blog.csdn.net/weixin_47297859/article/details/11752_3118
Markus Schiitz 10

m “For filtered sampling, all 10k threads process 1 node, then next, ...”
s Now need 16 byte per sample grid cell

s Also need fast access to 3% neighborhood
s Hash map no longer suitable
s Need to use global memory

m Just use one single sample grid, and utilize all GPU threads to
simultaneously process all points of a node

s Use all threads to clear sampling grid, then process next node

Markus Schiitz 11

Color Filtering m

m Color Filtering / Anti-Aliasing

s Picking random point for lower LOD => Bad color values
s Compute representative color values instead

s Lower LOD point = weighted average of points it represents

T T
3

Markus Schiitz old WithiSingle Sample New With"Color Filtering

m Easy and fast way:

s Compute average color of all points in sampling grid cell
s Then color of point at LOD — 1 is color / count.

m But: Only considers points in cell
s Should also consider neighborhood

'J"b.""

®
&
’

Markus Schiitz .;;1 ’{)

m Slower but nicer: Weighted average neighborhood

m For each point in all adjacent cells, compute weighted average
m The farther from center, the smaller the contribution
m Still fine-tuning, but much nicer appearance already

Markus Schiitz 14

m Still fine-tuning, but much nicer appearance

m Especially when in motion!
s Without filtering, results “sparkle”

oid Wth Single Sample New Wi Color Filtering

Markus Schiitz 15

‘j - - : i :'!.J] " ti I
R L e 8 - '. b |
1 . e f? - .o
g ":!_. E Tf.'-.' ¥ .
[1 - i = e

i i | .i. = G o = bt " IR F R =5 - = r
j"‘" i li‘:, 5 -] Ef: | o ‘:'“ ""'.ﬂ?;" L l '
Jw) - E5] J Lt bl BN =l
1 .
.1.'*‘_::‘ ."] o " = - . | e
o "

h

i

. ':_gﬁ e :U’ rd ‘. N
~ Old With Single'Sample

-

With ColorlEiltering

New_

Performance m

m Random sampling
s 145M points in 108ms (1.3 billion points/sec)

m Color Filtering (single-cell)
s 145M points in 340ms (426M points/sec)

m Color Filtering (3x3x3 neighborhood)

s 145M points in 946ms (152M points/sec)
m Same quality -> 100x faster than CPU
m Better quality -> still 10-40x faster than CPU

Markus Schiitz 17

Thank you for your attention

