
Using the Delft Blue 
supercomputer for processing 

massive point clouds

Nauman Ahmed
Research Software Engineer



Delftblue supercomputer
Node Category Number Cores CPU/GPU RAM SSD

Standard 218 48 2x Intel XEON 
E5-6248R 24C 
3.0GHz

192 GB 480 GB

Fat type-a 6 48 2x Intel XEON 
E5-6248R 24C 
3.0GHz

768 GB 480 GB

Fat type-b 4 48 2x Intel XEON 
E5-6248R 24C 
3.0GHz

1536 GB 480 GB

GPU 10 48 2x AMD EPYC 
7402 24C 2.80 
GHz, 4x NVIDIA 
Tesla V100S

32GB 256 GB



Delftblue supercomputer

• 100 Gbps interconnect between nodes
• 5 TB of storage (scratch memory) with throughput of atleast 20 

GB/sec
• 200 TB of TU Delft storage connected to scratch memory via a slow 

connection



PotreeConverter2

• To convert LAZ to Octree

Indexing



PotreeConverter2 on Delftblue

• AHN3
• 2. 33 TB on 1375 LAZ files
• Data first needed to be loaded in scratch storage for processing

• The performance of PotreeConverter 2 is measured
• with 4 AHN3 LAZ files. total points > 1 billion, size ~ 5 GB
• 12 threads on a standard Delftblue node
• sampling method: poisson
• Compression: BROTLI
• Took 11 minutes
• Output is proprietary format
• For whole AHN3 it will take ~ 4 - 5 days depending upon the load



CPU utilization

Low CPU utilization



RAM utilization

Low RAM utilization



Disk utilization
Peak disk usage is ~6x of 
input data

Final output is 
2x larger



CPU and RAM utilization issues
• Low CPU utilization in chunking and distribution due to I/O.

• However, they make up only 25% of total runtime
• Low RAM utilization

• Fully utilize the available RAM by memory mapping output files that are use 
in next stages, instead of writing them to disk. May use Fat-type nodes

• 75% time spent in indexing.
• 70% in sampling which is based on std::sort.

• Single node performance has little room for improvement.
• Avoid writing to shared grid in counting 
• Reducing I/O in distribution and indexing.

• MPI is used to scale the application



Disk utilization Issues
• Peak disk utilization is about 6x larger than input data
• Can't do 2.4 TB of AHN3 in one go with 5 TB scratch storage
• Four rounds are needed i.e.

• split the input data in 4 parts.
• Run PotreeConverter2 on each part till "indexing"and save the output to TU 

Delft storage
• Load the hierarchy information of all four parts and perform the final 

merging.



PotreeConverter2 MPI

• In indexing all chunks are processed independently
• Indexing on multiple nodes. Maximum speedup ~4x
• Input and settings

• with 20 AHN3 LAZ files. total points > 10 billion, size ~ 50 GB
• 12 threads on a standard Delftblue node
• sampling method: poisson
• Compression: BROTLI



PotreeConverter2 MPI



Future work on Delftblue

• Full MPI implementation of PotreeConverter2
• Trying to improve single node performance by memory mapping the chunk 

may complicate the MPI implementation

• Solve disk space issue
• Scale Martijn's SFC representation on Delftblue
• Maybe further look into untwine MPI.



Questions 
and 
Suggestions?

www.eScienceCenter.nl

n.ahmed@esciencecenter.com

+31 (0)20 460 4770


