
13-3-2019

Challenge the future

Delft
University of
Technology

Peter van Oosterom,

Martijn Meijers, Edward Verbree, Haicheng Liu and Theo Tijssen

Münchner GI-Runde, 14-15 March 2019

Towards a relational database Space

Filling Curve (SFC) interface specification

for managing nD-PointClouds

2nD-PointClouds

Why a DBMS approach?

• today’s common practice: specific file format (LAS, LAZ, ZLAS,…)

with specific tools (libraries) for that format

• specific files formats are sub-optimal data management:

• multi-user (access and some update)

• scalability (not nice to process 60.000 AHN2 files)

• integrate data (types: vector, raster, admin)

• ‘work around’ could be developed, but that’s building own DBMS

• no reason why point cloud can not be supported efficient in DBMS

• perhaps ‘mix’ of both: use file format for the PC blocks

• point clouds are a bit similar to raster data:

sampling nature, huge volumes, relatively static

• point clouds are a bit similar to vector data:

arbitrary xyz locations and may have other attributes

3nD-PointClouds

Standardization of point clouds?

• ISO/OGC spatial data:

• at abstract/generic level, 2 types of spatial representations: features

and coverages

• at next level (ADT level), 2 types: vector and raster, but perhaps

points clouds should be added

• at implementation/ encoding level, many different formats

(for all three data types)

• nD-PointCloud:

• points in nD space and not per se limited to x,y,z

(n ordinates of point which may also have m attributes)

• make fit in future ISO 19107

• note: nD point clouds are very generic;

e.g. also cover moving object point data: x,y,z,t (id) series.

4nD-PointClouds

Overview

1. Motivation: nD-PointCloud

2. Space Filling Curves

3. Operations

4. DBMS interface

5. Conclusion

acknowledgements: based on joint work with

Oscar Martinez-Rubi, Mike Horhammer, Stella Psomadaki,

Xuefeng Guan, Jippe van der Maaden, Simon van Oosterom, …

5nD-PointClouds

Motivation nD-PointCloud in DBMS

• point cloud data sets are often used for monitoring

 dynamic point clouds

 time added as additional organizing dimension

• organizing point cloud data in LoD’s/importance levels is an

approach to manage large data sets

 LoD: discrete (multi-scale) or continuous (vario-scale)

 scale treated as additional organizing dimension

• how to manage higher dimensional point clouds (4D, 5D)

6nD-PointClouds

Dynamic Point Clouds

• point clouds are generated every day, hour, minute
• repeated scans of the same area → dynamic
• time as selective as the spatial component or needed in

integrated space – time selections
• current DBMS solutions designed for static point clouds
• management is still a challenge
• example Sand Engine, time series Dutch coast, Deltares

(see Psomadaki et al, 2016) MSc thesis TU Delft.

2011 2015

7nD-PointClouds

Scale as dimension

• less obvious than time

• data pyramids

(Level of Detail/ Multi-scale)

• well-known from raster data

• results in discrete

number of levels (multi-scale)

• level could be considered

as additional dimension

x y

level

8nD-PointClouds

• overview queries just want top-subset

• detailed queries part of bottom-subset

• organize in data pyramid

2D schematic view, data blocks…. stretched over domain density

low

LoD 2

LoD 1

LoD 0

high

every next higher level, density 2k times less (2D  4, 3D  8)

Point cloud data pyramid

9nD-PointClouds

Data pyramid/multi-scale

• allows fast spatial searching including LoD selection

• the further away from viewer

the lesser points selected (i.e.

the higher level blocks/points)

• drawbacks:

1. discrete number of levels

2. bottom-up filling, unbalanced top

3. point random assigned to level

More points

Medium
points

Less points

Perspective view query

10nD-PointClouds

Discrete LoD’s are visible…

3D web-viewer ahn2.pointclouds.nl (640.000.000.000 points)

http://ahn2.pointclouds.nl: 640.000.000.000 points on-line 3D viewer

http://ahn2.pointclouds.nl/

11nD-PointClouds

Vario-scale for point cloud data

• lesson from vario-scale research: add one continuous dimension

to the geometry to represent scale

(2D data vario-scale represented by 3D geometry)

• apply this to point cloud data

1. compute the imp value (bonus slides)

2. add this as dimension, either

x,y,imp (z and others attributes) or

x,y,z,imp (and others as attributes)

3. Cluster/index the 3D or 4D point

4. Define perspective view selections,

view frustum with one more dimension:

the further, the higher imp’s

12nD-PointClouds

Representations of space, time, scale

…after grid/voxel or object/vector

• new 3rd representation: nD-PointCloud (nD-PC)

• many scientific domains (spatial): geography, medicine, physics,

astronomy, hydrology, architecture, archaeology, arts, CAD, social

media/ moving objects, gaming…

• deep integration space/time/scale

1. more efficient, store, exchange, compute

2. more functionality (smooth zoom/ analysis)

• nD-PC in whole processing chain: acquisition, DBMS, analysis,

simulation, dissemination, visualization,…

• BIG spatial data: 35 trillion points (in astronomy, geo-info)

13nD-PointClouds

Overview

1. Motivation

2. Space Filling Curves

3. Operations

4. DBMS interface

5. Conclusion

14nD-PointClouds

nD-PC data management

• management of nD-PC data, starts by defining

• dimensions (and their roles/priorities in the points)

• associated attributes

• dimensions are main drivers for data organization, clustering,

indexing, subdivision (for parallel processing), compression,

blocking/ caching and streaming of data

• various data management options possible, now focus on

• integrate dimension values in 1 value via Space Filling Curve (SFC):

Morton, Hilbert, and relation to quadtree (2n-tree)

15nD-PointClouds

Different clustering scheme’s for

space-time (or space-scale) cube

16x16x1 4x4x16 8x8x4

• challenge increases for higher dimensional hyper-cubes:

• 4D: 2D space-time-scale, 3D space-time, 3D space-scale

• 5D: 3D space-time-scale

16nD-PointClouds

nD-PC data management

• modelling theory for nD point cloud data

• tools to support modelers, developers and users in point cloud

data organization design decisions for (given 1. data sets and 2.

required functionalities in applications):

• what are the dimensions,

• what are the attributes,

• what type of organization: Morton-code/ kd-tree/ nD simplices-part,

• what relative scale of various dimensions,

• parameters such as clustering/ blocking size,

• what compression,

• what approach and level of parallelism (incl. hardware aspects),

 Modeling workbench

17nD-PointClouds

Space Filling Curves (SFCs)

• apply linear ordering to a multidimensional
domain (spatial clustering)

• organize a flat table efficiently
• full resolution keys: avoid storing x,y[,z] + t/l
 recovered from SFC key

• use Index Organized Table
(data stored in the B-Tree index)

• queries need to be re-written to SFC-ranges,
benefit from spatial clustering  efficient

• SFCs based on hyper-cubes
• Morton/Hilbert both nD and quadrant recursive
• Consider relative scaling of dimensions
• Space reserved on the hypercube for future data

Morton (Peano)

Hilbert

0

15

0

63

18nD-PointClouds

SQL DDL for index organized table

• Oracle:

CREATE TABLE PC_demo (hm_code NUMBER PRIMARY KEY)

ORGANIZATION INDEX;

• PostgreSQL, pseudo solution, not dynamic (better available?):

CREATE TABLE PC_demo (hm_code BIGINT PRIMARY KEY);

CLUSTER pc_demo ON pc_demo_pkey;

19nD-PointClouds

Lessons learnt so far…

• IOT (e.g. as in Oracle) is efficient structure, table/index together

• full high-res key allows omitting storing attributes (e.g. x or y as

they can be decoded in full resolution from the SFC key)

• full high-res and higher dimensional keys results in large keys (not

fitting in 64 bits, options varchar or raw bytes)

• SFC encoding/decoding, range generation outside database

results in quite a bit of communication overhead

• roles of organizing dimensions (x, y, time, importance) and other

attributes (non-organizing) is context dependent

• relative scaling organizing dimensions needed to compute SFC

(e.g. 1 meter = 1 second, influences the actual clustering)

• SFC ranges for (non-box) query geometry shapes has big benefits

over simple bounding box (more precise approx, less false hits)

• high-res SFC query ranges in nD space may result in many ranges

esp. when omitting some dimensions -> implies infinite extend

20nD-PointClouds

Overview

1. Motivation – nD PointClouds

2. Space Filling Curves

3. Operations

4. DBMS interface

5. Conclusion

21nD-PointClouds

SFC DBMS Interface specification

A. define functions for given square/cubic/… nD domain:

1. SFC_ENCODE (point, domain)  SFCkey; (for storage)

2. SFC_DECODE (SFCkey, domain)  point; (for use/computation)

3. SFC_RANGES (query_geometry, domain)  ranges; (for query)

B. SFC_CREATE create table, add SFCkey during bulk load

• or even replace point coordinates

• modify table from default heap to b-tree/IOT on SFCkey

C. SFC_DROP remove the point cloud and related IOT

SFC code (corresponds to cells of Quadtree in 2D, Octree in 3D, …)

22nD-PointClouds

000 001 010 011 100 101 110 111

0 1 2 3 4 5 6 7

X

111

7

110

6

101

5

100

4

011

3

010

2

001

1

000

0

Y

0

1

8

75

6

4

3

2

two examples of Morton code:

x= 110, y=111  xy= 111101 (decimal 61)

x= 001, y=010  xy= 000110 (decimal 6)

61

62

63

SFC_ENCODE (point, domain)

 SFCkey
• example Morton_code / Peano key / Z-order

• bitwise interleaving x-y coordinates

• also works in higher dimensions (nD)

23nD-PointClouds

Quadcode 0: Morton range 0-15

Quadcode 10: Morton range 16-19

Quadcode 12: Morton range 24-27

Quadcode 300: Morton range 48-48

(Morton code gaps resp. 0, 4, 20)

query_geometry, polygon

Note : SW=0, NW=1, SE=2, NE=3

SFC_RANGES (query_geometry, domain)

 ranges
• based on concepts of Region Quadtree & Quadcodes

• works for any type of query geometry (point, polyline, polygon)

• also works in 3D (Octree) and higher dimensions

111

7

110

6

101

5

100

4

011

3

010

2

001

1

000

0

Y

0

12
300

10

000 001 010 011 100 101 110 111

0 1 2 3 4 5 6 7

X

24nD-PointClouds

deeper in recursion  more ranges generated

• Pro: approximates query geometry better (less unwanted points)

• Con: too many range makes the join slower

techniques to avoid too many ranges:

• terminate recursion early,

• merge nearby ranges

balance to be investigated: how deep, how much merging w.r.t.

• query precision (add not too much space  more unwanted points)

• query speed (many ranges, means lot of work)

effect of range merging with gaps is adding space (more cells)

Merge ranges  analyze effects

25nD-PointClouds

Deeper

Merge ranges  add space

26nD-PointClouds

Quadcells / ranges and queries

CREATE TABLE query_results_1 AS (

SELECT * FROM

(SELECT x,y,z FROM ahn_flat WHERE

(hm_code between 1341720113446912 and 1341720117641215) OR

(hm_code between 1341720126029824 and 1341720134418431) OR

(hm_code between 1341720310579200 and 1341720314773503) OR

(hm_code between 1341720474157056 and 1341720478351359) OR

(hm_code between 1341720482545664 and 1341720503517183) OR

(hm_code between 1341720671289344 and 1341720675483647) OR

(hm_code between 1341720679677952 and 1341720683872255)) a

WHERE (x between 85670.0 and 85721.0)

and (y between 446416.0 and 446469.0))

Query 1 (small rectangle)

27nD-PointClouds

Use of Morton codes, AHN2 data

(PostgreSQL flat model example)

data Q1 Q4 Q7 response in seconds

size rect circle line (of hot/second query

20M 0.16 0.85 2.32 first query exact

210M 0.38 1.80 3.65 same pattern, but

2201M 0.93 4.18 7.11 3-10 times slower

23090M 3.14 14.54 21.44 both for normal flat

model and for Morton

with Q1 Q4 Q7 flat model)

Morton rect circle line

20M 0.15 0.56 0.82

210M 0.15 0.56 0.42

2201M 0.13 0.64 0.41

23090M 0.15 0.70 0.60

28nD-PointClouds

Storage model balancing

‘best’ organization is dependent on data and (frequent) queries; e.g.

• asking for time slice (map of one moment in time)

• performing time needle query (one location trough time)

• selecting data for time interval in limited area

dynamic data optimizing for space/time queries contradicts:

1. points close in space and time should be stored (to some

extent) close in memory for fast spatio-temporal retrieval

2. already organized points should not be reorganized when

inserting new data to achieve fast loading

29nD-PointClouds

Storage Model

storage of space and time:

1. integrated space and time approach: space and time have an

equal role in the SFC code

2. non-integrated space and time approach: time dominates over

space (and used first in organization)

second option easier to add data (dynamic scenario), no reorganization

30nD-PointClouds

Overview

1. Motivation – nD PointClouds

2. Space Filling Curves

3. Operations

4. DBMS interface

5. Conclusion

31nD-PointClouds

DBMS SFC (nD-PC) Standardization?

32nD-PointClouds

DBMS SFC requirements

1. Flexibility requirements (generic)

2. Performance requirements (BIG data)

3. Ease-of-use requirements

33nD-PointClouds

DBMS SFC 1. flexibility requirements

• support for multiple dimensions with flexible ordering, scaling

• support for various types of SFC (e.g. Morton, Hilbert)

• support for different representations of SFCkey (e.g. number,

character) for high-res large nD values needing > 64 (or 128) bits

• support for partial and full resolution keys

• support for implicit (as part of SFCkey) or explicit (as additional

attributes) storage of dimensions

• higher dimensional query geometries of various types (more than

just an nD box)

34nD-PointClouds

DBMS SFC 2. performance requirements

• data that will be used together must be stored together

• processing related to storage and query of point cloud data

should take place in the environment where the data is stored: in

the database

• data movements should be minimised (and data encode/decode

conversions with SFC software should be inside database to get

access to attribute in full resolution SFCkey)

35nD-PointClouds

DBMS SFC 3. ease-of-use requirements

• functionality must be available via SQL functions

• despite all tuning options, use of functions should be

straightforward (balance: one time tuning via the info in metadata,

and easy use of encode/ decode/ range functions)

• functionality should fit well with other spatial DBMS functionality

(e.g. to perform secondary filter point-in-polygon test)

• specifying a nD query geometry may be done via nD simplicial

complexes or nD regular polytopes, but users may be unfamiliar

with this, so simpler alternatives needed (e.g. extruded polygon)

• the number of SFC ranges is a crucial performance factor which

user should be able to influence (comparable to resolution, depth

in recursion, and involve glueing of ranges

36nD-PointClouds

DBMS SFC Dataset metadata
avoid passing all info in every function call  one place

PC_ID number system-generated, unique number

(link to functions)

PC_NAME varchar2(32) name of point cloud dataset

PC_DESCRIPTION varchar2(256) description of point cloud

PC_TABLE varchar2(32) name final structured table IOT

STAGING_TABLE varchar2(32) name intermediate staging table

(needed, may be virtual)

PC_DIMENSIONS number number of dimensions

PC_NUMBITS number number of bits per dimension

with which to encode

SFC_TYPE varchar2(32) ‘Morton’ or ‘Hilbert’

SFC_ENCODING varchar2(32) ‘Number’ or ‘Character’ or

‘Base32’ or ‘Base64’ or ‘Raw’…

KEY_TYPE varchar2(32) ‘Partial’ or ‘Full’

DIM_PROPERTIES varray(PC_DIMENSIONS) of DIM_SPEC

SRID number spatial reference of points in

point cloud (in 2D or 3D)

TIME_EPOCH datetime start encoded time value (UTC)

TIME_UNIT varchar2 unit time: year,week,day,hour

TIME_UCT_OFFSET number UTC offset

37nD-PointClouds

DBMS SFC Dimension specific metadata

for every organizing dimension the following metadata is specified:

DIM.NAME varchar2(32) name of dimension

DIM.DESCRIPTION varchar2(256) description of dimension

DIM.OFFSET number value to be added for

normalized dimension value

DIM.SCALE number scale factor for normalized

dimension value

DIM.MINVAL number minimal dim value in dataset

DIM.MAXVAL number maximum dim value in dataset

DIM.TOL number tolerance associated with dim

38nD-PointClouds

DBMS SFC encode and decode

• encode function

SFC_ENCODE (PC_ID, VAL_D1, VAL_D2, … , VAL_Dn)

Return: SFCkey

note: The actual encoding depends on and must be in sync with

the metadata (Morton/Hilbert, resolution, etc.)

• decode function

SFC_DECODE (PC_ID, SFCkey)

Return: VAL_D1, VAL_D2, … , VAL_Dn

39nD-PointClouds

DBMS SFC encode and decode (bulk)

• function calls are expensive, so for bulk of M points in N

dimension space pass array's and process all points

• bulk encode function

SFC_ENCODE (PC_ID, M, VAL[M*N])

Return: SFCkey[M]

• bulk decode function

SFC_DECODE (PC_ID, M, SFCkey[M])

Return: VAL[M*N]

40nD-PointClouds

DBMS SFC query geometry

SFC_RANGES (PC_ID, QUERY_GEOMETRY, [recursion depth,]

[max_nr_ranges,] [type] …)

Return: table of SFCkey_LOW, SFCkey_HIGH values [,range_type]

Notes:

1. returned SFC_RANGES are sorted

2. SFC_RANGES are used for the primary filter

3. QUERY_GEOMETRY options: a. nD-hyperbox, b. nD-hypersphere,

c. 2D/3D geometry+extrusion min/max other dimensions,

d. intersection nD-halfspaces (regular polytope), e. view frustum

important special case perspective view (trans-dimension query)

4. recursion depth  actual resolution/cell size (be careful)

5. ranges with smallest gap merges until at max_nr_ranges

6. SFC ranges type: complete in query geometry, or on boundary

(only for point in the on boundary ranges secondary filter needed)

41nD-PointClouds

DBMS SFC examples, loading stage

• filling metadata:

insert into user_pc_sfc_metadata values (1, ‘my test’,

‘a test point cloud’, ‘my_pc’, ‘test_pc_staging’, 3, 21,

‘Hilbert’, ‘Number’, ‘Full’, 28992, -1, ‘na’, 0)

• create and start loading data into a nD-PC SFC table:

select sfc_create(pc_id);

(during sfc_create execution function sfc_encode used)

42nD-PointClouds

DBMS SFC query examples (1/2)

• from query geometry to SFC ranges:

select * from sfc_ranges(pc_id, query_geom);

min | max

-----+-----

502 | 503

507 | 508

608 | 609

(3 rows)

• combined with the nD-PC data table in a join:

select sfc_decode(pc_id, key)

from my_pc pc, sfc_ranges(pc_id, query_geom) range

where pc.key between range.min and range.max;

43nD-PointClouds

DBMS SFC query examples (2/2)

• add secondary filter for ranges on boundary:

range type requested

select sfc_decode(my_pc, key)

from pc_table pc,

sfc_ranges(my_pc, query_geom, ‘added’) range

where (range.type = ‘in’ and

pc.key between range.min and range.max)

or (range.type = ‘on’ and

pc.key between range.min and range.max and

overlaps(query_geom, geometry(sfc_decode(my_pc, key))));

Drop a point cloud:

select drop_sfc_pc(pc_id);

44nD-PointClouds

nD-PC trans-dimension space-scale query

Perspective view

near

low

select upper blue tetrahedron (view_frust) from
prism-part of vario-scale x,y,imp point cloud data cube

x

y

LoD
(imp)

far

high

view
direction

view_frust

45nD-PointClouds

Normal view frustum selection and

streaming based on importance

• view frustum selection (pseudo code)

becomes with SLC ranges

• ordered on importance for streaming add order by imp desc;

(or distance from tilted plane)

select point

from point_cloud

where overlaps (point, view_frust)

select sfc_decode(pc_id, key) --> x y z imp

from my_pc pc, sfc_ranges(pc_id, view_frust) range

where pc.key between range.min and range.max;

46nD-PointClouds

Delta queries for moving and zoom

in/out (in VR/AR environments)

• select and send new points (pseudo SQL):

point in new_frust and point not in old_frust

• find and drop old points:

point in old_frust and not in new_frust

• note this works form both

1. changing view position x,y(,z)

2. zooming in or out (‘view from above’, imp-dimension)

• optional to work at point or block granularity

(in selection and server-client communication)

47nD-PointClouds

Drawback of high dimensional SFC?

• nD SFC keys have benefits: space-time-scale (and perhaps even

other attributes) in compact organization

• may select on multiple/trans dimensions at same time efficiently

• possible drawbacks of high dimensional point cloud:

1. need big SFC code (128 bits number or other encoding, like varchar)

2. if just limited number of dimensions are specified for selection 

other dimensions than range form min-to-max: ‘infinite tall prisms’

many (empty?) cells, what are the query performance consequences

• needs further exploration

(as the relative scaling of dimensions need attention  basis for

defining trans-dimension distance  actual grouping/ clustering)

48nD-PointClouds

Avoiding the curse of range explosion

• using recursion_depth and max_nr_ranges may result in

non-optimal ranges as query geometry is translated into ranges

without considering point cloud data distribution

• first refinement: avoid generation ranges in spaces were there is

no data (outside actual domain), simple min-max test.

Esp. when dimension in key, but not specified (infinite column)

• second refinement: create (recursive) nD-histogram and use to

generate more ranges in parts of space with high data density

• needs further exploration

49nD-PointClouds

Overview

1. Motivation – nD PointClouds

2. Space Filling Curves

3. Operations

4. DBMS interface

5. Conclusion

50nD-PointClouds

Conclusion

• nD-PointClouds as 3rd representation: direct use (storage, analysis,
visualization) or conversation to vector or raster

• develop functionality inside the database: encoding and decoding
SFC, SFC ranges generation

• investigate different space-time-scale relative dimension
representations in hypercube (for surface PC data, but also for
more dynamic data: moving object trajectories)

• investigate other SFCs (Morton/Hilbert, less ranges)

• generation of blocks using the same integrations of space, time
and scale (more efficient: less rows, block compression, …)

• standardize streaming, progressive nD-PointCloud web-services

51nD-PointClouds

Implementation / code

• Python code Dynamic Point Cloud available at:

https://github.com/stpsomad/DynamicPCDMS

• C++ code for Morton/Hilbert encode/decode/range generation

https://github.com/kwan2004/SFCLib

• Python and Rust code for running inside PostgreSQL

https://bitbucket.org/bmmeijers/sfc-rs

• eScience Massive Point Cloud code (database/ viewer) & docu

http://pointclouds.nl

• Oracle Database 12c

(Enterprise Edition Release 12.1.0.1.2 – 64 bit)

• Use of Index Organized Table (IOT)

• NUMBER data type for 128 bit Morton/Hilbert keys

https://github.com/stpsomad/DynamicPCDMS
https://github.com/kwan2004/SFCLib
https://bitbucket.org/bmmeijers/sfc-rs
http://pointclouds.nl/

52nD-PointClouds

Related projects and PhD theses

• Massive Point Clouds (NL): NL eScience Center, Oracle, RWS,

Fugro, CWI/MonetDB, TUD http://www.pointclouds.nl/

• Harvest4D (EU): Uni Wien, TUD computer graphics

https://harvest4d.org/

• IQumulus (EU): UCL, TUD, many more http://iqmulus.eu/

• Ahn Vu Vo: Spatial Data Storage and processing Strategies for

Urban Laser Scanning, PhD thesis, University College Dublin,

October 2016.

• Remi Cura: Inverse Procedural Street Modelling from interactive

to automatic reconstruction, PhD thesis, University Paris Est

(IGN/Thales), September 2016.

• Haicheng Liu: Towards 1015 points management – an nD

PointCloud approach, on-going PhD research, TU Delft

http://www.pointclouds.nl/
https://harvest4d.org/
http://iqmulus.eu/

53nD-PointClouds

Some Related Publications
• Xuefeng Guan, Peter van Oosterom, Bo Cheng, A Parallel N-dimensional Space-Filling-

Curve Library and Application in Massive Point Cloud Management, to be submitted to
ISPRS Int. J. Geo-Inf., 2018.

• Haicheng Liu, Peter van Oosterom, Martijn Meijers, Edward Verbree. Towards 1015-level
point clouds management - a nD PointCloud structure, In: Proceedings of the 21th AGILE
Conference on Geographic Information Science, Lund, pp. 7, 2018.

• Martijn Meijers, Wilko Quak, Peter van Oosterom, Archiving AIS messages in a Geo-
DBMS, In: Proceedings of the 20th AGILE Conference on Geographic Information Science,
Wageningen University & Research, pp. 3, 2017.

• Stella Psomadaki, Peter van Oosterom, Theo Tijssen, Fedor Baart, Using a Space Filling
Curve Approach for the Management of Dynamic Point Clouds, Chapter in: ISPRS Annals
Volume IV-2/W1, 11th 3D Geoinfo Conference, Athens, pp. 107-118, 2016.

• Stella Psomadaki, Using a Space Filling Curve for the Management of Dynamic Point Cloud
Data in a Relational DBMS, Master's thesis, Delft University of Technology, pp. 158, 2016.

• Irene de Vreede, Managing Historic Automatic Identification System data by using a
proper Database Management System structure, Master's thesis, Delft University of
Technology, pp. 90, 2016.

• Peter van Oosterom, Oscar Martinez-Rubi, Milena Ivanova, Mike Horhammer, Daniel
Geringer, Siva Ravada, Theo Tijssen, Martin Kodde, Romulo Gonçalves, Massive point
cloud data management: Design, implementation and execution of a point cloud
benchmark, In: Computers & Graphics, 49, pp. 92-125, 2015.

54nD-PointClouds

55nD-PointClouds

Steaming Point Cloud webservices

• Web services protocol (request/selection, response)

• Data format

• Streaming, ordering, compression

• Caching

• Progressive refinement

• Support LoD’s

• Visualization

• Fitting in existing WxS (WCS, WFS) or new service needed (WPCS)?

• Earlier work of OS Geo pointdown

• https://lists.osgeo.org/mailman/listinfo/pointdown

• https://github.com/pointdown/protocol

https://lists.osgeo.org/mailman/listinfo/pointdown
https://github.com/pointdown/protocol

56nD-PointClouds

Webservices

• better not try to standardize point clouds at database level (not

much support/ partners expected), but rather focus on

webservices level (more support/ partners expected)

• there is overlap between WMS, WFS and WCS...

• OGC point cloud DWG should explore if WCS is good start for

point cloud services:

• If so, then analyse if it needs extension

• If not good starting point, consider a specific WPCS, web point cloud

service standards (and perhaps further increase the overlapping

family of WMS, WFS, WCS,...)

57nD-PointClouds

• overview queries just want top-subset

• detailed queries part of bottom-subset

• organize in data pyramid

2D schematic view, data blocks…. stretched over domain density

low

LoD 2

LoD 1

LoD 0

high

every next higher level, density 2k times less (2D  4, 3D  8)

Point cloud data pyramid

58nD-PointClouds

Random LOD

ideal distribution among levels
• N(l) is number of points in nD space on level l (l=0: top level)

• N(0) = 2n*0 , N(1) = 2n*1 , …… , N(l) = 2n*l

• The l+1 ranges will be defined:

• Uniform random sampling

used to distribute point

over the level (l+1 ranges):

• Implemented in SFClib

(fast C++ parallel)

59nD-PointClouds

Getting rid of discrete level

postprocessing (1/2)

• Paper at IEEE VR 2019 (postprocessing at GPU, from 86.000.000 to

5.000.000 points every 5 to 6 frames  90 fps left+right = 180 fps)

60nD-PointClouds

Getting rid of discrete level

postprocessing (2/2)

• MSc Geomatics thesis ‘Vario-scale visualization of the AHN2 point

cloud’ by Jippe van der Maaden (TU Delft, April 2019).

• Assign radius to points

based on distance to camera

• Select points with empty

circle/spheres

61nD-PointClouds

Getting rid of discrete level

refined discrete levels
• L=10 (11 levels: 0..10)

R=2 refinements 22=4 sublevels:

• Ideal probability function

(Simon van Oosterom, Matlab)

62nD-PointClouds

Refined discrete levels (L=2: 0, 1, 2)

63nD-PointClouds

Refined discrete levels (L=4: 0, 1, ..4)

64nD-PointClouds

Refined discrete levels (L=10: 0, 1,

..10)

65nD-PointClouds

Refined discrete levels (L=13: 0, 1,

…13) = AHN2 levels

66nD-PointClouds

Refined discrete levels (L=31: 0, 1,

…31)

67nD-PointClouds

Getting rid of discrete level

real continous levels

• Ideal continuous probability function (1D case):

P(l)=ln((2^(L+1)-1)*U + 1)/ ln(2) with l between 0 and L+1

• And for the nD case:

P(l)=ln((2^(n*(L+1))-1)*U + 1)/ (n*ln(2))

• Even easier to compute than discrete levels (no intervals needed)

• Can be rounded to discrete intervals with ideal distribution (if

wanted)

