PhD research on nD point cloud data management

Haicheng Liu, Peter van Oosterom, Martijn Meijers, Rod Thompsen, Xuefeng Guan, Edward Verbree, Mike Horhammer H.Liu-6@tudelft.nl

Outline

- nD-histogram for querying non-uniformly distributed data
- Executing convex polytope queries
- Benchmarks and applications

Background – PlainSFC

Data structure: Space filling curve (SFC) + Oracle index-organized tables (IOT)

nD-histogram

PlainSFC querying

Improved by using an nD-histogram

ŤUDelft

4

nD-histogram

Whole workflow

Uniformity metric – cumulative hypercubic coverage (CHC)

ŤUDelft

nD-histogram – simulations

CHC values of different data sets

	3D	4D	5D	6D
DG1	0.4790	0.3329	0.2210	0.1571
DG2	0.0704	0.0573	0.0484	0.0410
DG3	-	0.0102	0.0082	0.0090
DG4	17-11	9 7 0	0.0017	0.0019
DG5	-	-	÷	0.0005

Average Effectiveness	of nD-histogram
-----------------------	-----------------

5	3D	4D	5D	6D
DG1	1.01	1.05	1.06	1.35
DG2	3.70	5.08	2.92	4.24
DG3	-	6.44	6.68	8.00
DG4	-	-	40.83	10.07
DG5	323	52	<u>-</u>	62.17

Different distributions for simulating dimensions

Convex polytope querying – definition

Convex polytope querying – intersection algorithms

• IBM CPLEX – rigorous linear programming method

(green) and SPHERE (blue), without a second filter

Benchmarks and applications – AHN2

- Data: AHN2 sample (XYZ coordinates), 10 billion points, south-western part of the Netherlands; split into 5 data sets for scalability test
- cLoD: computed for each point and values range: (0, 12000)

Storage size of datasets on the disk (in GB)

Dataset	Number	Raw TEXT	SFC	Pyramid	PyramidEx	PostGIS
	of points	files	ΙΟΤ			R-tree
1	5 × 10 ⁸	16.49	10	18.24	18.52	7.212
2	10 ⁹	32.98	19.95	36.39	36.95	14.17
3	2×10^{9}	64.42	38.97	71.06	72.01	28.1
4	6×10^{9}	193.9	118.3	213.6	216.2	82.32
5	1010	323.4	199.7	356.9	360.7	138.0

Query windows with different selectivity

	x	Y	Z	cLoD	Whole (output/total)
Small1	1.73%	4.37%	99.46%	94.31%	0.05%
Small2	20.5%	79.11%	1.01%	23.48%	0.05%
Small3	20.25%	17.58%	98.8%	1.03%	0.05%
Medium	20.29%	35.02%	98.29%	11.23%	0.67%
Large	20.39%	55.3%	98%	40.03%	4.53%

Benchmarks and applications – AHN2

Small-1 query

TUDelft

Small-3 query

Medium query

Large query

Benchmarks and applications – AHN2

Perspective view selection using the polytope, response time < 1 s

ŤUDelft

Benchmarks and applications – flood

Niansi Levee, Jiangxi Province, China

Delft

- For flood risk analysis, a large database storing modelling results is needed, e.g., generate flood maps
- Computation based on mesh, storage using raster is cumbersome:
 - Triangular cells have to be averaged, accuracy damaged;
 - The converted rasters also contain lots of empty cells
- Extract Centroids of mesh to form a point cloud
 - 8 dimensions, caseID, XYZT, flow velocity, depth and direction, 332,775,680 points

12

Benchmarks and applications – flood

Qid	Description
Q1	Select the area that is flooded with depth greater than 3 m, in case 1
Q2	Select the area that is flooded in 24 hours, in case 1
Q3	Select the maximum inundation area, in case 1
Q4	Select the area that is flooded around several houses (a rectangle area), in case 1
Q5	Select the dangerous points along a country road (velocity \geq 0.5), in case 1
06	Select dangerous locations evaluated by human instability (depth x velocity > 2), in case 1

Q2 time cost (s)

Benchmarks and applications – flood

14

Thanks for your attention

