Spatio-temporal characterization of drought

Vitali Díaz Mercado

Outline

- Vitali Díaz Mercado
- Spatio-temporal characterization of drought
- nD-PointCloud data to represent spatio-temporal phenomena

Vitali Díaz Mercado

TUDelft

PhD Hydroinformatics

Spatio-temporal characterisation of drought: data analytics, modelling, tracking, impact and prediction

Specialist Watershed Management

Runoff calculation of ungauged basins with distributed hydrological modelling and data of neighbouring basins

MSc Water Sciences

Geomatics design and implementation of the distributed hydrological model CEQUEAU for (quasi-) natural basins

BSc Civil Engineering

Statistical analysis and probabilistic modelling of variables in the reliability analysis of concrete vehicle bridges

Spatio-temporal characterization of drought

Background

Background

Dataset	Source/ Reference	Spatial resolution and coverage	Temporal resolution and coverage	Meteorological data source	Procedure
SPI-PRECL0p5	IRI Analyses SPI: Standardized Precipitation Index analyses of multiple global precipitation datasets	0.5 deg, globe	1,3,6,9, 12-month, 1948-2016	P from NOAA's PRECipitation REConstruction over Land (PRECL)	(Guttman, 1999)
SPI-TS2p1	IRI Analyses SPI	0.5 deg, globe	1,3,6,9, 12-month, 1901-2012	P from University of East Anglia (UEA) Climatic Research Unit (CRU), monthly Time Series (TS), Version 2.1 (CRU TS 2.1)	(Guttman, 1999)
SPI-UEA	IRI Analyses SPI	0.5 deg, globe	1,3,6,9, 12-month, 1901-1998	P from University of East Anglia (UEA) Climatic Research Unit (CRU), monthly time series, twentieth-century	(Guttman, 1999)
SPI-CAMSOPI	IRI Analyses SPI	2.5 deg, globe	1,3,6,9, 12-month, 1979-2016	P from Climate Anomaly Monitoring System (CAMS) and OLR Precipitation Index (OPI)	(Guttman, 1999)
SPI-CMAP0407v1	IRI Analyses SPI	2.5 deg, globe	1,3,6,9, 12-month, 1979-2004	P from NOAA's Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP)	(Guttman, 1999)
SPI-GPCPv2OPI	IRI Analyses SPI	2.5 deg, globe	1,3,6,9, 12-month, 1979-1987	P from Global Precipitation Climatology Centre, monthly precipitation dataset, Version 2.0	(Guttman, 1999)
African Flood and Drought Monitor (AFDM), SPI dataset	(Sheffield et al., 2014)	0.25 deg, -19S to 55N, -35W to 37.75E	1,3,6, 12-month, 1950-present	P from Princeton's Global Meteorological Forcing Dataset	(McKee et al., 1993)
Latin American Flood and Drought Monitor (LAFDM), SPI dataset	Latin American Flood and Drought Monitor (LAFDM)	0.25 deg, -118.5S to -29.25N, -56W to 33.25E	1,3,6, 12-month, 1950-present	P from Princeton's Global Meteorological Forcing Dataset	(McKee et al., 1993)
Standardized Precipitation Evaporation Index (SPEI) v2.3	(Beguería et al., 2014)	2.5 deg, globe	1 to 48-month, 1901-2013	P from/ET base on CRU TS 3.23 dataset	(Vicente-Serrano 2010; Beguería et al., 2014)

Information of a few databases containing drought indicator data

P precipitation, ET evapotranspiration IRI Analyses SPI available from http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.Analyses/.SPI/ LAFDM available from http://stream.princeton.edu/LAFDM/WEBPAGE/

Gaps in spatio-temporal characterization of drought

- Methods to characterize drought explicitly based on its spatiotemporal features such as spatial extent (area) and pathway
- Methods to monitor and predict drought that consider the spatiotemporal characteristics

Spatio-temporal drought tracking

Diaz et al. 2020 (STOTEN), 2020 (ADWR)

Diaz et al. 2021

Spatial drought patterns analysis through visual approaches

Radial diagrams

- Polar Area Diagram (PAD)
- MOnthly Spider ChArt (MOSCA)
- AnnUal RAdar chart (AURA)

Drought patterns

- Periodicity: PAD, AURA
- · Seasonality: PAD
- Persistence: PAD, MOSCA
- Hotspots: PAD, MOSCA, AURA
- Cohesion: AURA
- Fragmentation: AURA
- Similarity: PAD, MOSCA, AURA
- Dispersion (variability): MOSCA
- Trend: PAD, AURA

Diaz et al. (to be submitted)

The proposed scope opens a new area of potential for drought prediction

 $(dL_{t+l}, theta_{t+l}, da_{t+l}) = f(dL_t, theta_t, da_t, L^*, dd^*)$

 da_t drought area at time t da_{t+1} drought area at time t+1 dL_{t+1} distance between da_t and da_{t+1} $thetha_{t+1}$ angle (deg) of line btw centroids of da_t and da_{t+1} dL_t distance between da_{t-1} and da_t $thetha_t$ angle (deg) of line btw centroids of da_{t-1} and da_t L^* average length of trajectories dd^* average duration

The connection with my previous work

- 2. Drought characteristics calculation
- Characteristics calculated with time series of drought areas
 - onset and end
 - duration
 - severity
 - intensity
- Characteristics calculated with coordinates of centroids
 - onset and end location
 - direction
 - rotation
 - path length

DA drought area *ds* drought severity *dd* drought duration *p_i i*-th centroid coordinates

Spatio-temporal change detection

Spatio-temporal change detection

Estimation of features for environment monitoring

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/WI-2021 6th International Conference on Smart Data and Smart Cities, 15–17 September 2021, Stuttgart, Germany

EVALUATION OF IPAD PRO 2020 LIDAR FOR ESTIMATING TREE DIAMETERS IN URBAN FOREST

X. Wang ^{1, 2, *}, A. Singh ³, Y. Pervysheva ⁴, K. E. Lamatungga ⁵, V. Murtinová ⁶, M. Mukarram ^{7, 8}, Q. Zhu ¹, K. Song ¹, P. Surový ³, M. Mokroš ^{2, 3, *}

¹ School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China, wxl332529@163.com; seed27@126.com; ksong@des.ecnu.edu.cn ² Department of Forest Harvesting, Logistics and Ameliorations, Faculty of Forestry, Technical University in Zvolen, Slovakia martin.mokros@tuzvo.sk; mokros@fld.czu.cz ³ Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic singha@fld.czu.cz; urovy@fld.czu.cz Department of Geoinformation Technologies and Space Monitoring of the Earth, National aerospace university "Kharkiv Aviation Institute", Ukraine lizapervyseva@gmail.com ⁵ Department of Natural Environment, Faculty of Forestry, Technical University in Zvolen, Slovakia kikiekiawan@gmail.com ⁶ Department of Applied Ecology, Faculty of ecology and environmental sciences, Technical University in Zvolen, Slovakia vmurtinova@gmail.com ⁷ Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India mdmukarram007@gmail.com ⁸ Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Slovakia

TUDelft

Querying for water-related problems

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021 XXIV ISPRS Congress (2021 edition)

AN EFFICIENT ND-POINT DATA STRUCTURE FOR QUERYING FLOOD RISK

H. Liu^{a,*}, P. Van Oosterom^a, B. Mao^b, M. Meijers^a, R. Thompson^c

 ^a Faculty of Architecture and the Built Environment, Delft University of Technology, Delft, the Netherlands (H.Liu-6, P.J.M.vanOosterom, B.M.Meijers)@tudelft.nl
^b Changjiang River Scientific Research Institute, Wuhan, China bingm@whu.edu.cn
^c 39 Salstone Street Kangaroo Point, Brisbane, Australia rodnmaria@gmail.com

nD-PointCloud data to represent spatio-temporal phenomena Hydrological applications

The added value of direct point cloud analysis in hydrology: A new method to derive streams from LiDAR data Master Thesis

> Stijn Ticheloven Supervisors: Edward Verbree & Hans van der Kwast Responsible professor: Peter van Oosterom February 26, 2021

Spatio-temporal characterization of drought

Vitali Diaz

