
20-10-2016

Challenge the future

Delft
University of
Technology

Peter van Oosterom

Plenary lecture at the Joint 3D Athens Conference,
18-21 October, Athens, Greece

nD-PointClouds

a model for deeply integrating

space, time and scale

2nD-PointClouds

Overview

• motivation
• scale as dimension
• functionality
• data management
• standardization (if time allows)
• conclusion

acknowledgements: based on joint work with Edward Verbree,
Theo Tijssen, Oscar Martinez-Rubi, Mike Horhammer, Stella
Psomadaki, Xuefeng Guan, …

kind of sequel on last years keynote at JIGC 2015, Kuala Lumpur:
Realistic benchmarks for point cloud data management systems

3nD-PointClouds

Motivation

• point cloud data sets are often used for monitoring
� dynamic point clouds
� time as additional organizing dimension

• organizing point cloud data in LoD’s/importance levels is an
approach to manage large data sets
� LoD: discrete (multi-scale) or continuous (vario-scale)
� scale treated as additional organizing dimension

• how to manage higher dimensional point clouds (4D, 5D)

4nD-PointClouds

time more obvious: well-known space-time cubes

Time as dimension

5nD-PointClouds

Dynamic Point Clouds

• point clouds are generated every day, hour, minute
• repeated scans of the same area → dynamic
• time as selective as the spatial component or needed in

integrated space – time selections
• current DBMS solutions designed for static point clouds
• management is still a challenge
• example Sand Engine, time series Dutch coast, Deltares

(see Psomadaki et al, Friday)

2011 2015

6nD-PointClouds

Scale as dimension

• less obvious than time
• data pyramids

(Level of Detail/ Multi-scale)
• well-known from raster data
• results in discrete

number of levels (multi-scale)
• level could be considered

as additional dimension

x y

level

7nD-PointClouds

Vario-scale with polygonal vector data

8nD-PointClouds

Representations of space, time, scale

…after grid/voxel or object/vector

• new 3rd representation: nD point cloud (PC)

• many scientific domains (spatial): geography, medicine, physics,
astronomy, hydrology, architecture, archaeology, arts, CAD, social
media/ moving objects, gaming…

• deep integration space/time/scale
1. more efficient, store, exchange, compute

2. more functionality (smooth zoom/ analysis)

• nD PC in whole processing chain: acquisition, DBMS, analysis,
simulation, dissemination, visualization,…

• BIG spatial data: 35 trillion points (in astronomy, geo-info)

9nD-PointClouds

Overview

• motivation
• scale as dimension
• functionality
• data management
• standardization
• conclusion

10nD-PointClouds

LoD/multi-scale Point Cloud

• data pyramid (Level of Detail/ Multi-scale) in analogy with raster

• imagine a fine 2D (or 3D) bottom level grid to organize the points

• option is after every 4 points in cell move 5th point to parent cell
(for 2D organization and every 9th point in case of 3D),
recursively bottom-up filling the cell/blocks at higher levels

• results in data pyramid � discrete number of levels (multi-scale)

• Note: depending on input data distribution,
some areas my reach higher levels than others

11nD-PointClouds

• overview queries just want top-subset
• detailed queries part of bottom-subset
• organize in data pyramid

2D schematic view, data blocks…. stretched over domain density
low

LoD 2

LoD 1

LoD 0
high

every next higher level, density 2k times less (2D � 4, 3D � 8)

Point cloud data pyramid

12nD-PointClouds

Data pyramid/multi-scale

• allows fast spatial searching including LoD selection

• the further away from viewer
the lesser points selected (i.e.
the higher level blocks/points)

• drawbacks:
1. discrete number of levels

2. bottom-up filling, unbalanced top

3. point random assigned to level

More points

Medium
points

Less points

Perspective view query

13nD-PointClouds

Discrete LoD’s are visible…

3D web-viewer ahn2.pointclouds.nl (640.000.000.000 points)

http://ahn2.pointclouds.nl: 640.000.000.000 points on-line 3D viewer

14nD-PointClouds

Data pyramid alternatives

• not random points, but more characteristic points move up
(more important), some analysis needed; e.g.:
1. compute local data density � more dense less important

2. compute local surface shape � more flat less important

3. other criteria, data collection/application dependent (intensity)

(combine into) one imp_value of point � better than random

• not bottom-up, but top-down population, make sure that top
levels are always filled across complete domain (lower levels
may not be completely filled)

15nD-PointClouds

Further improvements …

beyond discrete levels

• might result in artefacts when looking at perspective view image
(possible ‘see’ blocks of different levels)

• also not optimal within block (near viewer perhaps not enough
points, further from viewer perhaps too much points)

• would a true vario-scale option possible?

� Vario-scale geo-info research at TU Delft

16nD-PointClouds

Vario-scale for point cloud data

• lesson from vario-scale research: add one continuous dimension
to the geometry to represent scale
(2D data vario-scale represented by 3D geometry)

• apply this to point cloud data
1. compute the imp value

2. add this as dimension, either

x,y,imp (z and others attributes) or

x,y,z,imp (and others as attributes)

3. Cluster/index the 3D or 4D point

4. Define perspective view selections,

view frustum with one more dimension:

the further, the higher imp’s

17nD-PointClouds

Perspective view

near

low

select upper blue tetrahedron (view_frust) from
prism-part of vario-scale x,y,imp point cloud data cube

x

y

LoD
(imp)

far

high

view
direction

view_frust

18nD-PointClouds

Normal view frustum selection and

streaming based on importance

• view frustum selection

• ordered on importance for streaming

(or distance from tilted plane)

select point
from point_cloud
where overlaps (point, view_frust)
order by imp desc;

select point
from point_cloud
where overlaps (point, view_frust)

19nD-PointClouds

Delta queries for

moving and zoom in/out

• select and send new points:
point in new_frust and point not in old_frust

• find and drop old points:
point in old_frust and not in new_frust

• note this works form both
1. changing view position x,y(,z)

2. zooming in or out (‘view from above’, imp-dimension)

• optional to work at point or block granularity
(in selection and server-client communication)

20nD-PointClouds

Overview

• motivation
• scale as dimension
• functionality
• data management
• standardization
• conclusion

21nD-PointClouds

Point cloud analysis

• benefits:
• no conversion time

• no data loss

• analysis may be better

• LoD continuous (raster pixels factor 2, vector hard)

• very realistic representations (e.g tree with leaves)

• drawbacks:
• lot of data

• redevelop algorithms

• have it as option
together with conversions PC ��vector, PC�� raster

22nD-PointClouds

Types of analysis, direct point clouds

• solar energy potential
• viewshed/ line-of-sight
• 3D routing (e.g. drone; see Rodenberg et al, Friday)
• change detection (deformations)
• volume analysis computations
• hydrology/ flow over surface
• vegetation analysis

• continuous LoD
also for analysis
not only visualization

23nD-PointClouds

Point cloud base functionality (1/2)
1. simple range/rectangle filters (of various sizes)
2. selections based on points along a linear route (with buffer)
3. selections of points overlapping a 2D polygon
4. selections based on the attributes such as intensity I (/RGB)
5. multi-resolution/LoD selection (select top x%)
6. sort points on relevance/importance (support streaming)
7. slope orientation or steepness computation
8. compute normal vector of selected points
9. convert point cloud to TIN representation
10.convert point cloud to Grid (DEM)
11.convert point cloud to contours
12.k-nearest neighbor selection (approx or exact)
13.selection based on point cloud density
14.spatial join with other table; e.g. 100 building polygons
15.spatiotemporal selection queries (specify space+time range)
16.temporal differences computations and selection
17.compute min/max/avg/median height in 2D/3D area

24nD-PointClouds

Point cloud base functionality (2/2)
18.hill shading relief (image based on point cloud/DEM/TIN)
19.view shed analysis (directly on point cloud with fat points)
20. flat plane detection (and segmentation point, add plane_id)
21.curved surface detection (cylinder, sphere patches, freeform)
22.compute area of implied surface (by point cloud)
23.compute volume below surface
24.select on address/postal code/geographic names (gazetteer)
25.coordinate transformation RD-NAP - ETRS89
26.compute building height using point cloud (diff in/outside)
27.compute cross profiles (intersect with vertical plane)
28.combine multiple point clouds (Laser+MBES)

29.volume difference between design (3D polyhedral) surface and
point could

30.detect break line point cloud surface
31.selection based on perspective view (point cloud density)
32.delta selection of query 31, moving to new position

25nD-PointClouds

Overview

• motivation
• scale as dimension
• functionality
• data management
• standardization
• conclusion

26nD-PointClouds

nD PC data management

• management of nD PC data, starts by defining
• dimensions (and their roles/priorities in the points)

• associated attributes

• dimensions are main drivers for data organization, clustering,
indexing, subdivision (for parallel processing), compression,
blocking/ caching and streaming of data

• investigate various data management options
• kd-tree based organization (no scaling issues of different dimensions)

• organization based on simplices (e.g. triangle/tet bins, Sierpinski)

• integrate dimension values in 1 value via Space Filling Curve (SFC):
Morton, Hilbert, and relation to quadtree

27nD-PointClouds

Different blocking scheme’s for

space-time (or space-scale) cube

16x16x1 4x4x16 8x8x4

• challenge increases for higher dimensional hyper-cubes:
• 4D: 2D space-time-scale, 3D space-time, 3D space-scale

• 5D: 3D space-time-scale

28nD-PointClouds

kd-tree

• alternating x, y split
• needs resorting (again and again)
• works in nD (alternative x,y,z split, or x,y,z,t split, or ..)
• may get unbalanced, not dynamic
• dimensions metric independent (scaled, distributed differently)
• used by László Dobos et al (cosmological particles, Bridget Falck)

x1

y2y1 x5

x4

x3

y3..

x2

x1

y1 y2

x2 x3 x4 x5

y3..

http://graphics.stanford.edu

29nD-PointClouds

Simplices based
• Sierpinski Curves: start with two triangles (2D)

and split recursively
• works in 3D (tets) and higher?

• Elliot Sefton-Hash uses triangle bins
with quadsplit (planetary data)

15

0

7

0

3

0
1

0

0

31

0

63

0

00

01

30nD-PointClouds

nD-PointClouds data management

• modelling theory for nD point cloud data

• tools to support modelers, developers and users in point cloud
data organization design decisions for (given 1. data sets and 2.
required functionalities in applications):

• what are the dimensions,

• what are the attributes,

• what type of organization: Morton-code/ kd-tree/ nD simplices-part,

• what relative scale of various dimensions,

• parameters such as clustering/ blocking size,

• what compression,

• what approach and level of parallelism (incl. hardware aspects),

� Modeling workbench

31nD-PointClouds

In detail: Space Filling Curves (SFCs)

• apply linear ordering to a multidimensional
domain (spatial clustering)

• organize a flat table efficiently
• full resolution keys: avoid storing x,y[,z] + t/l

� recovered from SFC key

• use Index Organized Table
(data stored in the B-Tree index)

• queries need to be re-written to SFC-ranges,
benefit from spatial clustering � efficient

• SFCs based on hyper-cubes
• Morton/Hilbert both nD and quadrant recursive
• Consider relative scaling of dimensions
• Space reserved on the hypercube for future data

Morton (Peano)

Hilbert

0

15

0

63

32nD-PointClouds

Some Space Filling Curves

0 1 2 3 col

row

3

2

1

0
0

15

0 1 2 3 col

row

3

2

1

0
0

15

0 1 2 3 col

0 15

row

3

2

1

0

Row (first y, then x) PeanoHilbert

space filling curve used for block/cell creation
ordering or numbering of cells in kD into 1D using bi-jective mapping

Default nD-array

(non clustering)

33nD-PointClouds

3D Morton curve

illustrations from http://asgerhoedt.dk

2x2x2 4x4x4 8x8x8

34nD-PointClouds

3D Hilbert curve

illustrations from Wikimedia Commons

2x2x2 4x4x4 8x8x8

35nD-PointClouds

Average number of clusters for all

possible range queries

• Faloutsos and
Roseman, 1989

• N=8, number of Clusters
for a given range query:

0 63

Peano (3 ranges) Hilbert (2 ranges)

36nD-PointClouds

Use Hilbert/Morton code

• two options:
1. flat table model create b-tree index on SFC code

2. walk the curve create point cloud blocks

• better flat table model (tested with Oracle):

• not use the default heap-table, but an indexed organized table IoT

(issue with duplicate values � CTAS distinct)

• no separate index structure needed � more compact, faster

• best (as no redundancy):
• not x, y, z, time, LoD attributes, but just high-res SFC code

(as x, y, z coordinates and time, LoD can be obtained from code)

37nD-PointClouds

SQL DDL for index organized table

• Oracle:

CREATE TABLE PC_demo (hm_code NUMBER PRIMARY KEY)

ORGANIZATION INDEX;

• PostgreSQL, pseudo solution, not dynamic (better available?):

CREATE TABLE PC_demo (hm_code BIGINT PRIMARY KEY);

CLUSTER pc_demo ON pc_demo_pkey;

38nD-PointClouds

SFC code technique outline

A. define functions for given square/cubic/… nD domain:

1. Compute_Code(point, domain) � Code; (for storage)

2. Overlap_Codes(query_geometry, domain) � Ranges; (for query)

B. add SFC Code during bulk load or afterwards
• or even replace point coordinates

C. modify table from default heap to b-tree on Code

SFC code (corresponds to Quadtree in 2D, Octree in 3D, …)

39nD-PointClouds

000 001 010 011 100 101 110 111
0 1 2 3 4 5 6 7

X

111
7
110
6
101
5
100
4
011
3
010
2
001
1
000
0

Y

0

1

8

75

6
4

3

2

two examples of Morton code:

x= 110, y=111 � xy= 111101 (decimal 61)

x= 001, y=010 � xy= 000110 (decimal 6)

61

62

63

Compute_Code (point, domain) �

Morton_code / Peano key / Z-order

• bitwise interleaving x-y coordinates
• also works in higher dimensions (nD)

40nD-PointClouds

Quadcode 0: Morton range 0-15

Quadcode 10: Morton range 16-19

Quadcode 12: Morton range 24-27

Quadcode 300: Morton range 48-48

(Morton code gaps resp. 0, 4, 20)

query_geometry, polygon

Note : SW=0, NW=1, SE=2, NE=3

Overlap_Codes (query_geometry, domain)

� Morton_code_ranges
• based on concepts of Region Quadtree & Quadcodes
• works for any type of query geometry (point, polyline, polygon)
• also works in 3D (Octree) and higher dimensions

111
7
110
6
101
5
100
4
011
3
010
2
001
1
000
0

Y

0

12
300

10

000 001 010 011 100 101 110 111
0 1 2 3 4 5 6 7

X

41nD-PointClouds

Overlap_Codes (query_geometry,domain,parent_quad) def
for quad = 0 to 3 do

quad_domain = Split (domain, quad);
curr_quad_code = parent_quad+quad;
case Relation (query_geometry, quad_domain) is

quad_covered: write Range(curr_quad_code);
quad_partly: Overlap_Codes (query_geometry,

quad_domain, curr_quad_code);
quad_disjoint: done;

notes: - number of quads 2k (for 2D: 4, for 3D: 8, etc.)
- quad_covered with resolution tolerance
- Range() translates quadcode to Morton range: start-end
- above algorithm writes ranges in sorted order (eg linked list)

Overlap_Codes(), recursive function

Pseudo code

42nD-PointClouds

Overlap_codes (the_query, the_domain, ‘’);
Glue_ranges (max_ranges);

Overlap_codes() creates the sorted ranges (in linked list).
result can be large number of ranges, not pleasant for DBMS

query optimizer gets query with many ranges in where-clause

reduce the number of ranges to ‘max_ranges’ with Glue_ranges()
(which also adds unwanted codes)

Glue_ranges (max_ranges) def
Num_ranges = Count_ranges ();
Remove_smallest_gaps (num_ranges – max_ranges);

notes: - gaps size between two ranges may be 0 (no codes added)
- efficient to create gap histogram by Count_ranges()

Create ranges & post process (glue)

43nD-PointClouds

Quadcells / ranges and queries

CREATE TABLE query_results_1 AS (
SELECT * FROM

(SELECT x,y,z FROM ahn_flat WHERE
(hm_code between 1341720113446912 and 13417201176412 15) OR
(hm_code between 1341720126029824 and 13417201344184 31) OR
(hm_code between 1341720310579200 and 13417203147735 03) OR
(hm_code between 1341720474157056 and 13417204783513 59) OR
(hm_code between 1341720482545664 and 13417205035171 83) OR
(hm_code between 1341720671289344 and 13417206754836 47) OR
(hm_code between 1341720679677952 and 13417206838722 55)) a

WHERE (x between 85670.0 and 85721.0)
and (y between 446416.0 and 446469.0))

Query 1 (small rectangle)

44nD-PointClouds

Drawback of high dimensional SFC?

• nD SFC keys have benefits: space-time-scale (and perhaps even
other attributes) in compact organization

• may select on multiple dimensions at same time efficiently

• possible drawbacks of high dimensional point cloud:
1. need big SFC code (128 bits number or other encoding, like varchar)

2. if just limited number of dimensions are specified for selection �

other dimensions then range form min-to-max: ‘tall prisms’

many (empty?) cells, what are the query performance consequences

• needs further exploration

(as the relative scaling of dimensions need attention � basis for
defining cross-dimension distance � actual grouping/ clustering)

45nD-PointClouds

Storage model balancing

‘best’ organization is dependent on data and queries; e.g.
• asking for time slice (map of one moment in time)
• performing time needle query (one location trough time)
• selecting data for time interval in limited area

dynamic data optimizing for space/time queries contradicts:

1. Points close in space and time should be stored (to some
extent) close in memory for fast spatio-temporal retrieval

2. Already organized points should not be reorganized when
inserting new data to achieve fast loading

46nD-PointClouds

Storage Model

storage of space and time:

1. integrated space and time approach: space and time have an

equal role in the SFC code

2. non-integrated space and time approach: time dominates over

space (and used first in organization)

second option easier to add data (dynamic scenario), no reorganization

47nD-PointClouds

Overview

• motivation
• scale as dimension
• Functionality
• data management
• standardization
• conclusion

48nD-PointClouds

OGC Domain Working Group PC

DWG PC is active for about 1 year
chairs: Stan Tillman (Intergraph), Jan Boehm (UCL), myself

first, conducted Point Cloud Survey (use, tools, needs,…)

received 188 responses:
https://docs.google.com/spreadsheets/d/1_6389UlkIblWyneY5WbbO
NMMJ-ZiNaeUmcs_iG6olS0/edit?usp=sharing

next, following priorities for the DWG are identified:

1. further collaborate with ASPRS on LAS (OGC community standard)

2. explore HDF5 as format for Point Cloud data

3. interoperable steaming Point Cloud webservices

49nD-PointClouds

Standardization of point clouds?

• ISO/OGC spatial data:
• at abstract/generic level, 2 types of spatial representations:

features and coverages

• at next level (ADT level), 2 types: vector and raster,

but perhaps points clouds should be added

• at implementation/ encoding level, many different formats

(for all three data types)

• nD point cloud:
• points in nD space and not per se limited to x,y,z

(n ordinates of point which may also have m attributes)

• make fit in future ISO 19107

• note: nD point clouds are very generic;

e.g. also cover moving object point data: x,y,z,t (id) series.

50nD-PointClouds

Characteristics of possible standard

point cloud data type

1. xyz (a lot, use SRS, various base data types: int, float, double,..)

2. attributes per point (e.g. intensity I, color RGB or classification,

or imp or observation point-target point or…)

� correspond conceptually to a higher dimensional point

3. fast access (spatial cohesion) � blocking scheme (in 2D, 3D, …)

4. space efficient storage � compression (exploit spatial cohesion)

5. data pyramid (LoD, multi-scale/vario-scale, perspective) support

6. temporal aspect: time per point (costly) or block (less refined)

7. query accuracies (blocks, refines subsets blocks with/without

tolerance value of on 2D, 3D or nD query ranges or geometries)

8. operators/functionality (next slides)

9. options to indicate use of parallel processing

51nD-PointClouds

Grouping of functionality

a. loading, specify conversion / organization
b. selections
c. LoD use/access
d. analysis I (not assuming 2D surface in 3D space)
e. analysis II (some assuming a 2D surface in 3D space)
f. conversions (some assuming 2D surface in 3D space)
g. towards reconstruction, classification, segmentation
h. updates: insert, delete, modify

(grouping of functionalities from user requirements)

52nD-PointClouds

Loading, specify

conversion / organization

• input format
• storage blocks based on which dimensions (2, 3, 4,…)
• data pyramid, block dimensions (level: discrete or continuous)
• compression option (none, lossless, lossy)
• spatial clustering (morton, hilbert,…) within and between blocks
• spatial indexing (rtree, quadtree) within and between blocks

• validation (more format, e.g. no attributes omitted, than any
geometry or topological validation; perhaps outlier detection)?

53nD-PointClouds

Webservices

• better not try to standardize point clouds at database level (not
much support/ partners expected), but rather focus on
webservices level (more support/ partners expected)

• there is overlap between WMS, WFS and WCS...

• OGC point cloud DWG should explore if WCS is good start for
point cloud services:

• If so, then analyse if it needs extension

• If not good starting point, consider a specific WPCS, web point cloud

service standards (and perhaps further increase the overlapping

family of WMS, WFS, WCS,...)

54nD-PointClouds

Overview

• motivation
• scale as dimension
• functionality
• data management
• standardization
• conclusion

55nD-PointClouds

Related projects and PhD theses

• Massive Point Clouds (NL): NL eScience Center, Oracle, RWS,
Fugro, CWI/MonetDB, TUD Harvest4D (EU): Uni Wien, TUD
computer graphics

• IQumulus (EU): UCL, TUD, many more

• Ahn Vu Vo: Spatial Data Storage and processing Strategies for
Urban Laser Scanning, PhD thesis, University College Dublin,
October 2016.

• Remi Cura: Inverse Procedural Street Modelling from interactive
to automatic reconstruction, PhD thesis, University Paris Est
(IGN/Thales), September 2016.

56nD-PointClouds

Conclusion

• nD-PointClouds as 3rd representation: direct use (storage,
analysis, visualization) or conversation to vector or raster

• develop functionality inside the database: encoding and
decoding SFC, SFC ranges generation

• investigate different space-time-scale relative dimension
representations in hypercube (for surface PC data, but also for
more dynamic data: moving object trajectories)

• investigate other SFCs (Morton/Hilbert, less ranges) and/or
other organizations (kd-tree, simplex based)

• generation of blocks using the same integrations of space, time
and scale (more efficient: less rows, block compression, …)

• standardize streaming, progressive nD-PointCloud web-services

57nD-PointClouds

Implementation / code

• Python code Dynamic Point Cloud available at:
https://github.com/stpsomad/DynamicPCDMS

• C++ code for Morton/Hilbert encode/decode/range generation
https://github.com/kwan2004/SFCLib

• eScience Massive Point Cloud code (database/ viewer) & docu
http://pointclouds.nl

• Oracle Database 12c
(Enterprise Edition Release 12.1.0.1.2 – 64 bit)

• Use of Index Organized Table (IOT)

• NUMBER data type for 128 bit Morton/Hilbert keys

58nD-PointClouds

Thanks for your attention

• time for questions?

59nD-PointClouds

OGC actions in more detail

ASPRS: LAS file format

• American Society for Photogrammetry and Remote Sensing (ASPRS)

developed LAS 1.4; https://www.asprs.org/committee-general/laser-las-

file-format-exchange-activities.html (with Domain Profile)

• 2 nov’15: OGC and ASPRS to collaborate on geospatial standards, invite

participation in Point Cloud work;

http://www.opengeospatial.org/pressroom/pressreleases/2313

• Ongoing effort to bring the LAS 1.4 point cloud format into the OGC as a

community standard

• Attention points (for the future): Attribute flexibility, Other sources than

laser, Compression, Organization (clustering)

60nD-PointClouds

HDF5 for Point Cloud data

• Explore capabilities: test/ benchmarks, assess tools

• Hierarchical Data Format (HDF): file format to store /organize large

amounts of data, originally by National Center for Supercomputing

Applications (NCSA)

• Hierarchical, filesystem-like data format, 2 types of objects:

• Datasets: nD arrays

• Groups: container structures for datasets and other groups

• See HDF5 for point cloud data

• Chauhan et al (jun’ 15): National Geospatial Intelligence Agency (NGA) Sensor

Independent Point Cloud (SIPC)

• Ingram (mar’16): Advanced Point Cloud Format Standards

• Note: also NetCDF 4 (more grid oriented) is based on HDF5

61nD-PointClouds

Steaming Point Cloud webservices

• Web services protocol (request/selection, response)

• Data format

• Streaming, ordering, compression

• Caching

• Progressive refinement

• Support LoD’s

• Visualization

• Fitting in existing WXS (WCS, WFS) or new service needed (WPCS)?

• Earlier work of OS Geo pointdown

• https://lists.osgeo.org/mailman/listinfo/pointdown

• https://github.com/pointdown/protocol

