
12-6-2019

Challenge the future

Delft
University of
Technology

Peter van Oosterom

Keynote at ISPRS geospatial week 13 June 2019, Enschede, Netherlands

Acknowledgements: based on joint work with Martijn Meijers, Edward Verbree,

Haicheng Liu, Theo Tijssen, Oscar Martinez-Rubi, Mike Horhammer, Stella

Psomadaki, Xuefeng Guan, Jippe van der Maaden, and Simon van Oosterom

From discrete to continuous levels of

detail for managing nD-PointClouds

2nD-PointClouds

Motivation

• point Clouds are large data sets (AHN2 640.000.000.000 points)

 must be organized efficiently (clustering/indexing)

• just space and/or time is not sufficient

• Works well for zoomed-in/detail queries

• Does not work well for overview queries

• therefore, need for levels of detail (LoD)

as scale in vector maps and/or data pyramid in raster maps

• current state of the art is discrete LoDs

e.g. octree levels as created by Potree (converter)

• discrete LoDs have drawbacks  continuous LoDs needed

3nD-PointClouds

Discrete LoDs are visible…

http://ahn2.pointclouds.nl: 640.000.000.000 points on-line 3D viewer

http://ahn2.pointclouds.nl/

4nD-PointClouds

Overview

1. discrete Levels of Detail (scale levels)

2. vario-scale for point cloud data

3. post-processing to get of discrete levels

4. pre-processing to reduce effect (refined discrete levels)

5. continuous levels

6. conclusion

5nD-PointClouds

Scale as dimension

• less obvious than space or time

• data pyramids

(Level of Detail/ Multi-scale)

• well-known from raster data

(and vector tiles)

• results in discrete

number of levels (multi-scale)

• level could be considered

as additional dimension

x y

level

6nD-PointClouds

• overview queries just want top-subset

• detailed queries part of bottom-subset

• organize in data pyramid

2D schematic view, data blocks…. stretched over domain density

low

LoD 2

LoD 1

LoD 0

high

every next higher level, density 2n times less: 1D, n=1  2 times less;

2D, n=2  4 times less; 3D, n=3  8 times less

Point cloud data pyramid

7nD-PointClouds

Random LOD

ideal distribution among levels

• Nl is number of points in nD space on level l (l=0: top, l=L bottom)

• N0 = 2n*0 , N1 = 2n*1 , …… , NL = 2n*L

• the L+1 ranges of the levels (0, 1, … L) are defined as

• uniform random sampling

used to distribute point

over the level (L+1 ranges):

• implemented in SFClib

(fast C++ parallel)

8nD-PointClouds

Data pyramid/multi-scale

• allows fast spatial searching including LoD selection

• the further away from viewer

the lesser points selected (i.e.

the higher level blocks/points)

• drawback:

discrete number of levels

are visible (suboptimal)

More points

Medium
points

Less points

Perspective view query

9nD-PointClouds

Overview

1. discrete Levels of Detail (scale levels)

2. vario-scale for point cloud data

3. post-processing to get of discrete levels

4. pre-processing to reduce effect (refined discrete levels)

5. continuous levels

6. conclusion

10nD-PointClouds

Vario-scale for point cloud data

• lesson from vario-scale research: add one continuous dimension

to the geometry to represent scale

(2D data vario-scale represented by 3D geometry)

• apply this to point cloud data

1. compute the imp value per point

2. add this as dimension, either

x, y, imp (z and others attributes) or

x, y, z, imp (and others as attributes)

3. Cluster/index the 3D or 4D point

4. Define perspective view selections,

view frustum with one more dimension:

the further, the higher imp’s

11nD-PointClouds

nD-PC trans-dimension space-scale query

Perspective view

near

low

select upper blue tetrahedron (view_frust) from
prism-part of vario-scale x, y, imp point cloud data cube

x

y

LoD
(imp)

far

high

view
direction

view_frust

12nD-PointClouds

Normal view frustum selection and

streaming based on importance

• view frustum selection (pseudo code)

• ordered on importance for streaming add order by imp desc;

(or distance from tilted plane)

select point

from point_cloud

where overlaps (point, view_frust)

13nD-PointClouds

Delta queries for moving and zoom

in/out (in VR/AR environments)

• select and send new points (pseudo SQL):

point in new_frust and point not in old_frust

• find and drop old points:

point in old_frust and not in new_frust

• note this works for both

1. changing view position x,y(,z)

2. zooming in or out (‘view from above’, imp-dimension)

• optional to work at point or block granularity

(in selection and server-client communication)

14nD-PointClouds

Overview

1. discrete Levels of Detail (scale levels)

2. vario-scale for point cloud data

3. post-processing to get of discrete levels

4. pre-processing to reduce effect (refined discrete levels)

5. continuous levels

6. conclusion

15nD-PointClouds

Getting rid of discrete level

postprocessing (1/2)

• paper at IEEE VR 2019 (postprocessing at GPU, from 86.000.000 to

5.000.000 points every 5 to 6 frames  90 fps left+right = 180 fps)

16nD-PointClouds

Getting rid of discrete level

postprocessing (2/2)

• MSc Geomatics thesis ‘Vario-scale visualization of the AHN2 point

cloud’ by Jippe van der Maaden (TU Delft, April 2019).

• assign radius to points

based on distance to camera

• select points with empty

circle/sphere

• remove 70-90% of points

17nD-PointClouds

Overview

1. discrete Levels of Detail (scale levels)

2. vario-scale for point cloud data

3. post-processing to get of discrete levels

4. pre-processing to reduce effect (refined discrete levels)

5. continuous levels

6. conclusion

18nD-PointClouds

• 1D example, duplicate data (per dimension) for next level: Nl=2l

• same principle as vector, raster LoD’s (and quadtree/octree approach)

example with L=3 (4 levels)

2 26.7% 22=4

3 53.3% 23=8

0 6.7% 20=1

1 13.3% 21=2

l ℙ0(l) r0=refinement 0 Nl=2l

Ideal distribution refined LoD r0

0% probabilty distribution over the levels 100%

L max level (0, 1,.. L)

l level

r refinement

Nl #points at level l

ℙr(l) probability level l

at refinement r

19nD-PointClouds

Mathematics behind P0(l)

• probability point x assigned to level l at refinement 0

• total number of points at refinement 0 summed over all levels

• note: this is the 1D case

if nD, then replace the 2 in the above formulas by 2n

20nD-PointClouds

• next to integer levels also compute ideal data amount for half levels

• use exactly same for formula: Nl=2l

summing r1 probabilities l=0 and l=0.5 totals to r0 probability for l=0

2.5 15.6% 22.5=5.656

3.5 31.2% 23.5=11.314

0.5 3.9% 20.5=1.414

1.5 7.8% 21.5=2.828

l ℙ1(l) r1=refinement 1 Nl=2l

2 11.0 + 26.7% 22=4

3 22.1% +  53.3% 23=8

0 2.8% + 6.7% 20=1

1 5.5% +  13.3% 21=2

0% probabilty distribution over the levels 100%

Ideal distribution refined LoD r1

21nD-PointClouds

• next refinement, also compute for quarter levels

• use exactly same for formula: Nl=2l

note: Ideal distribution is maintained (check by summing first 4 levels)

l ℙ2(l) r2=refinement 2 Nl=2l

2 22=4

3 23=8

0 1.26% 20=1

1 21=2

2.5 15,6% 22.5=5.656

3.5 31.2% 23.5=11.314

0.5 1.78% 20.5=1.414

1.5 7.8% 21.5=2.828

2.25 22.25=4.757

3.25 23.25=9.514

0.25 1.50% +  6.7% 20.25=1.189

1.25 21.25=2.378

1.75 21.75=3.364

2.75 22.75=6.727

3.75 23.75=13.454

0.75 1.78% 2075=1.682

Ideal distribution refined LoD r2

0% probabilty distribution over the levels 100%

22nD-PointClouds

Mathematics behind Pr(l)

• probability point x is assigned to level l at refinement r

• total number of points at refinement r summed over all levels

• note: this is the 1D case

23nD-PointClouds

The discrete dimension level

corresponds to data density

• assume:

• N = number of points in dataset

• En = size of spatial domain in nD case (data cube, equal size all dims)

• then overall data density:

• discrete probability function (nD case) at refinement r:

• density at discrete level l at refinement r

 direct linear relation between level and density!

24nD-PointClouds

Overview

1. discrete Levels of Detail (scale levels)

2. vario-scale for point cloud data

3. post-processing to get of discrete levels

4. pre-processing to reduce effect (refined discrete levels)

5. continuous levels

6. conclusion

25nD-PointClouds

Getting rid of (refined) discrete levels

 real continuous levels, 1D case

• for ideal continuous function over levels: r → ∞

for l between 0 and L+1

• this function has Cumulative Distribution Function (CDF):

for l between 0 and L+1

• using random generator U (uniform between 0 and 1) to generate

level l (between 0 and L+1) for next point:

26nD-PointClouds

Getting rid of discrete levels

implementation
• refined ideal discrete probability and continuous function, 1D case

(Simon van Oosterom, Matlab)

• example L=10 (11 levels: 0..10), R=2 refinements 22=4 sublevels:

27nD-PointClouds

Matlab: refined discrete levels

L = 2;

R = [0,1,2,3,5,10];

/* plot, loop over R and call function Prob(r,L) */

function [l,P] = Prob(r,L)

l = 0:0.5^r:L+1-0.5^r; /* loop beg:step:end */

P = (2^l)/Tot(r,L);

end

function tot = Tot(r,L) /* recursive def */

if r == 0

tot = 2^(L+1)-1;

else

tot = (1+2^(1/2^r))*Tot(r-1,L);

end

end

28nD-PointClouds

Refined discrete levels (L=2: 0, 1, 2)

blue bars: refined discrete, red curve: continuous function

29nD-PointClouds

Refined discrete levels (L=4: 0, 1, ..4)

30nD-PointClouds

Refined discrete levels (L=13: 0, 1,

…13)  14 AHN2 levels

31nD-PointClouds

Getting rid of (refined) discrete levels

 real continuous levels, nD case

• for ideal continuous function over levels (nD):

for l between 0 and L+1

and n number of dimensions

• this function has Cumulative Distribution Function (CDF):

for l between 0 and L+1

and n number of dimensions

• using random generator U (uniform between 0 and 1) to generate

level l (between 0 and L+1) for next point in nD space:

32nD-PointClouds

The continuous dimension level also

corresponds to data density

• ‘thickness’ of a continuous level is 0  density at that level is also 0

therefor cumulative density, summed from top (level 0) to level l

• use Cumulative Distribution Function (CDF) for nD case:

with l between 0 and L+1

and n number of dimensions

• Cumulative Density (CD) at continuous level l for nD case:

with N total points in dataset

En size spatial domain nD case

 Direct linear relation between continuous level - cumulative density!

33nD-PointClouds

The influence of L (#levels -1)

• discrete integer levels as inspiration for a good distribution

• in 2D about 80% of the data is at lowest level

(and in 3D about 90% at lowest level)

 Let's roughly say all data are at lowest level

• total data set (say 640.000.000.000), #points per block (say 10.000)

 need 64.000.000 blocks

• in 2D with L=13 we can host 413 = 67.108.864 blocks at level 13

(the lowest of the 14 levels named level 0, level 1, ..., level 13)

 enough and indeed the depth of the current AHN2 octree

• in general L needed in nD case: 𝐿 = ⌈
ln(# blocks)

ln(2𝑛)
⌉ (for 2D: 2𝑛 = 4)

34nD-PointClouds

But, does L really matter?

• as long as L is large enough...

• for 2D, 10.000 points/block, L=31

46.116.860.184.273.879.040.000 (>1022)

points can be stored at lowest level

• foes it matter when fewer points are stored and their l dimension is

computed with assuming L=31 (instead of L=13 in case of AHN2)?

• probably not, just remember that least important points (the majority)

get level value l between 31 and 32

• needed when creating a proper space-scale (xyz + l) predicate in the

where-clause of the query

35nD-PointClouds

Overview

1. discrete levels of detail (scale levels)

2. vario-scale for point cloud data

3. post-processing to get of discrete levels

4. pre-processing to reduce effect (refined discrete levels)

5. continuous levels

6. conclusion

36nD-PointClouds

Conclusion

• nD-PointClouds as 3rd representation: direct use (storage, analysis,
visualization) or conversation to vector or raster

• nD-PointClouds better for vario-scale than
• raster: factor 2 data pyramid, discrete, ‘redundant’’
• vector: continuous, but hard to keep topology

• ideal point distribution over LoD via random sampling
• keeps relative point density, may me relevant
• can be done in parallel and very efficient

• other than random is possible, but hard to get ideal distribution
(1. distance/density based, 2. semantics based)

• mapping from level to expected density is possible
 allows for gradual perspective views (and/or focus views)

37nD-PointClouds

Future work
• implement nD-PointCloud with ideal continuous level dimension (for

AHN, use xy+l to organize data)

• store nD-PointCloud in database using Space Filling Curve
(cluster/index) at point and/or block level

• create/adapt 3D interactive nD-PointCloud web-viewer
• stable continuous zoom (same point not on/off when zooming in) as

supported with our method and
• perspective/focus view (required density based on view distance)

• larger data sets; e.g. dense matched high resolution areal images
NL nationwide dataset expects 60 trillion 60.000.000.000.000 points

• temporal point cloud, also time dimension in organization

• more dimensions in organizations (and same number of points) the
more sparse some parts of the nD space gets  use nD-histogram

